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Extract Text Data from Files
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This example shows how to extract the text data from text, HTML, Microsoft® Word, PDF,
CSV, and Microsoft Excel® files and import it into MATLAB® for analysis.

Usually, the easiest way to import text data into MATLAB is to use the extractFileText
function. This function extracts the text data from text, PDE, HTML, and Microsoft Word
files. To import text from CSV and Microsoft Excel files, use readtable. To extract text
from HTML code, use extractHTMLText. To read data from PDF forms, use
readPDFFormData.

Text File

Extract the text from sonnets. txt using extractFileText. The file sonnets. txt
contains Shakespeare's sonnets in plain text.

filename = "sonnets.txt";
str = extractFileText(filename);

View the first sonnet by extracting the text between the two titles "I" and "II".
start = " I" + newline;

fin = " II";
sonnetl = extractBetween(str,start, fin)

sonnetl
From fairest creatures we desire increase,
That thereby beauty's rose might never die,
But as the riper should by time decease,
His tender heir might bear his memory:
But thou, contracted to thine own bright eyes,
Feed'st thy light's flame with self-substantial fuel,
Making a famine where abundance lies,
Thy self thy foe, to thy sweet self too cruel:
Thou that art now the world's fresh ornament,
And only herald to the gaudy spring,
Within thine own bud buriest thy content,
And tender churl mak'st waste in niggarding:
Pity the world, or else this glutton be,
To eat the world's due, by the grave and thee.
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Microsoft Word Document

Extract the text from sonnets.docx using extractFileText. The file
exampleSonnets.docx contains Shakespeare's sonnets in a Microsoft Word document.

filename = "exampleSonnets.docx";
str = extractFileText(filename);

View the second sonnet by extracting the text between the two titles "II" and "III".
start = " II" + newline;
fin = " III";
sonnet2 = extractBetween(str,start,fin)
sonnet2 =
When forty winters shall besiege thy brow,
And dig deep trenches in thy beauty's field,
Thy youth's proud livery so gazed on now,
Will be a tatter'd weed of small worth held:
Then being asked, where all thy beauty lies,
Where all the treasure of thy lusty days;
To say, within thine own deep sunken eyes,
Were an all-eating shame, and thriftless praise.
How much more praise deserv'd thy beauty's use,
If thou couldst answer 'This fair child of mine
Shall sum my count, and make my old excuse,'
Proving his beauty by succession thine!

This were to be new made when thou art old,

And see thy blood warm when thou feel'st it cold.

1-3



1 extData Preparation

1-4

The example Microsoft Word document uses two newline characters between each line.
To replace these characters with a single newline character, use the replace function.

sonnet2 = replace(sonnet2, [newline newline],newline)

sonnet?2

When forty winters shall besiege thy brow,
And dig deep trenches in thy beauty's field,
Thy youth's proud livery so gazed on now,
Will be a tatter'd weed of small worth held:
Then being asked, where all thy beauty lies,
Where all the treasure of thy lusty days;
To say, within thine own deep sunken eyes,
Were an all-eating shame, and thriftless praise.
How much more praise deserv'd thy beauty's use,
If thou couldst answer 'This fair child of mine
Shall sum my count, and make my old excuse,"
Proving his beauty by succession thine!
This were to be new made when thou art old,
And see thy blood warm when thou feel'st it cold.

PDF Files
Extract text from PDF documents and data from PDF forms.
PDF Document

Extract the text from sonnets.pdf using extractFileText. The file
exampleSonnets.pdf contains Shakespeare's sonnets in a PDF.

filename = "exampleSonnets.pdf";
str = extractFileText(filename);

View the third sonnet by extracting the text between the two titles "III" and "IV". This
PDF has a space before each newline character.

start = " III " + newline;
fin = "IV";
sonnet3 = extractBetween(str,start,fin)
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sonnet3 =

Look in thy glass and tell the face thou viewest
Now is the time that face should form another;
Whose fresh repair if now thou not renewest,
Thou dost beguile the world, unbless some mother.
For where is she so fair whose unear'd womb
Disdains the tillage of thy husbandry?
Or who is he so fond will be the tomb,
0f his self-love to stop posterity?
Thou art thy mother's glass and she in thee
Calls back the lovely April of her prime;
So thou through windows of thine age shalt see,
Despite of wrinkles this thy golden time.

But if thou live, remember'd not to be,

Die single and thine image dies with thee.

PDF Form

To read text data from PDF forms, use readPDFFormData. The function returns a struct
containing the data from the PDF form fields.

filename = "weatherReportForml.pdf";
data = readPDFFormData(filename)

data = struct with fields:
event type: "Thunderstorm Wind"
event narrative: "Large tree down between Plantersville and Nettleton."

HTML
Extract text from HTML files, HTML code, and the web.
HTML File

To extract text data from a saved HTML file, use extractFileText.

filename = "exampleSonnets.html";
str = extractFileText(filename);

1-5
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View the forth sonnet by extracting the text between the two titles "IV" and "V".

start = newline + "IV" + newline;
fin = newline + "V" + newline;
sonnet4 = extractBetween(str,start,fin)

sonnet4 =

Unthrifty loveliness, why dost thou spend

Upon thy self thy beauty's legacy?

Nature's bequest gives nothing, but doth lend,
And being frank she lends to those are free:
Then, beauteous niggard, why dost thou abuse
The bounteous largess given thee to give?
Profitless usurer, why dost thou use

So great a sum of sums, yet canst not live?
For having traffic with thy self alone,

Thou of thy self thy sweet self dost deceive:
Then how when nature calls thee to be gone,
What acceptable audit canst thou leave?

Thy unused beauty must be tombed with thee,
Which, used, lives th' executor to be.

HTML Code

To extract text data from a string containing HTML code, use extractHTMLText.

code = "<html><body><h1>THE SONNETS</hl><p>by William Shakespeare</p></body></html>";
str = extractHTMLText(code)

str =

"THE SONNETS

by William Shakespeare"
From the Web

To extract text data from a web page, first read the HTML code using webread, and then
use extractHTMLText.

url = "https://www.mathworks.com/help/textanalytics";
code = webread(url);
str = extractHTMLText (code)
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str =
'Text Analytics Toolbox™ provides algorithms and visualizations for preprocessing,

Text Analytics Toolbox includes tools for processing raw text from sources such a

Using machine learning techniques such as LSA, LDA, and word embeddings, you can -

Parse HTML Code

To find particular elements of HTML code, parse the code using htmlTree and use
findElement. Parse the HTML code and find all the hyperlinks. The hyperlinks are
nodes with element name "A".

tree = htmlTree(code);
selector "A";
subtrees findElement (tree,selector);

View the first 10 subtrees and extract the text using extractHTMLText.
subtrees(1:10)

ans =
10x1 htmlTree:

<A class="svg link navbar-brand" href="https://www.mathworks.com?s tid=gn logo"><II
<A class="mwa-nav_login" href="https://www.mathworks.com/login?uri=http://www.math
<A href="https://www.mathworks.com/products.html?s tid=gn ps">Products</A>

<A href="https://www.mathworks.com/solutions.html?s tid=gn sol">Solutions</A>

<A href="https://www.mathworks.com/academia.html?s tid=gn acad">Academia</A>

<A href="https://www.mathworks.com/support.html?s tid=gn supp">Support</A>

<A href="https://www.mathworks.com/matlabcentral/?s tid=gn _mlc">Community</A>

<A href="https://www.mathworks.com/company/events.html?s tid=gn ev">Events</A>

<A href="https://www.mathworks.com/company/aboutus/contact us.html?s tid=gn cntus":
<A href="https://www.mathworks.com/store?s cid=store top nav&amp;s tid=gn store">H

str = extractHTMLText(subtrees);
View the extracted text of the first 10 hyperlinks.
str(1:10)

ans = 10x1 string array
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"Sign In"
"Products"
"Solutions"
"Academia"
"Support"
"Community"
"Events"
"Contact Us"
"How to Buy"

To get the link targets, use getAttributes and specify the attribute "href" (hyperlink
reference). Get the link targets of the first 10 subtrees.

attr = "href";
str = getAttribute(subtrees(1:10),attr)

str = 10x1 string array
"https://www.mathworks.com?s tid=gn_logo"
"https://www.mathworks.com/login?uri=http://www.mathworks.com/help/textanalytics/ii
"https://www.mathworks.com/products.html?s tid=gn ps"
"https://www.mathworks.com/solutions.html?s tid=gn sol"
"https://www.mathworks.com/academia.html?s tid=gn acad"
"https://www.mathworks.com/support.html?s_tid=gn_supp"
"https://www.mathworks.com/matlabcentral/?s tid=gn mlc"
"https://www.mathworks.com/company/events.html?s tid=gn ev"
"https://www.mathworks.com/company/aboutus/contact us.html?s tid=gn_cntus"
"https://www.mathworks.com/store?s cid=store top nav&s tid=gn store"

CSV and Microsoft Excel Files

To extract text data from CSV and Microsoft Excel files, use readtable and extract the
text data from the table that it returns.

Extract the table data using the readtable function and view the first few rows of the
table.

T = readtable('weatherReports.csv', 'TextType', 'string');
head(T)

ans=8x16 table
Time event id state event type d:




Extract Text Data from Files

22-Jul-2016 16:10:00 6.4433e+05 "MISSISSIPPI" "Thunderstorm Wind"
15-Jul-2016 17:15:00 6.5182e+05 "SOUTH CAROLINA" "Heavy Rain"
15-Jul-2016 17:25:00 6.5183e+05 "SOUTH CAROLINA" "Thunderstorm Wind"
16-Jul-2016 12:46:00 6.5183e+05 "NORTH CAROLINA" "Thunderstorm Wind"
15-Jul-2016 14:28:00 6.4332e+05 "MISSOURI" "Hail"

15-Jul-2016 16:31:00 6.4332e+05 "ARKANSAS" "Thunderstorm Wind"
15-Jul-2016 16:03:00 6.4343e+05 "TENNESSEE" "Thunderstorm Wind"
15-Jul-2016 17:27:00 6.4344e+05 "TENNESSEE" "Hail"

Extract the text data from the event narrative column and view the first few strings.

str = T.event narrative;
str(1:10)

ans = 10x1 string array
"Large tree down between Plantersville and Nettleton."
"One to two feet of deep standing water developed on a street on the Winthrop Unive
"NWS Columbia relayed a report of trees blown down along Tom Hall St."
"Media reported two trees blown down along I-40 in the 0Old Fort area."
"A few tree limbs greater than 6 inches down on HWY 18 in Roseland."
"Awning blown off a building on Lamar Avenue. Multiple trees down near the interse
"Quarter size hail near Rosemark."
"Tin roof ripped off house on 0ld Memphis Road near Billings Drive. Several large -
"Powerlines down at Walnut Grove and Cherry Lane roads."

Extract Text from Multiple Files

If your text data is contained in multiple files in a folder, then you can import the text data
into MATLAB using a file datastore.

Create a file datastore for the example sonnet text files. The examples files are named
"exampleSonnetN. txt", where N is the number of the sonnet. Specify the file name
using the wildcard "*" to find all file names of this structure. To specify the read function
to be extractFileText, input this function to fileDatastore using a function handle.

fds fileDatastore('exampleSonnet*.txt', 'ReadFcn',@extractFileText)

fds =
FileDatastore with properties:

Files: {
" ...\Documents\MATLAB\examples\textanalytics-ex15735454
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" ...\Documents\MATLAB\examples\textanalytics-ex15735454
" ...\Documents\MATLAB\examples\textanalytics-ex15735454
. and 1 more
}
UniformRead: 0
ReadFcn: @extractFileText
AlternateFileSystemRoots: {}

Loop over the files in the datastore and read each text file.

str

= [1;

while hasdata(fds)

end

textData = read(fds);
str = [str; textData];

View the extracted text.

str

str = 4x1 string array
" From fairest creatures we desire increase,« That thereby beauty's rose might ne
" When forty winters shall besiege thy brow,« And dig deep trenches in thy beaut
" Look in thy glass and tell the face thou viewesta Now is the time that face sh
" Unthrifty loveliness, why dost thou spende« Upon thy self thy beauty's legacy?«

See Also

extractFileText | extractHTMLText | readPDFFormData | tokenizedDocument

Related Examples

“Prepare Text Data for Analysis” on page 1-12

“Create Simple Text Model for Classification” on page 2-2
“Visualize Text Data Using Word Clouds” on page 3-2
“Analyze Text Data Containing Emojis” on page 2-35
“Analyze Text Data Using Topic Models” on page 2-18
“Analyze Text Data Using Multiword Phrases” on page 2-9



See Also

“Classify Text Data Using Deep Learning” on page 2-53
“Train a Sentiment Classifier” on page 2-43
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Prepare Text Data for Analysis

This example shows how to create a function which cleans and preprocesses text data for
analysis.

Text data can be large and can contain lots of noise which negatively affects statistical
analysis. For example, text data can contain the following:

* Variations in case, for example "new" and "New"

* Variations in word forms, for example "walk" and "walking"

*  Words which add noise, for example stop words such as "the" and "of"

* Punctuation and special characters

« HTML and XML tags

These word clouds illustrate word frequency analysis applied to some raw text data from
weather reports, and a preprocessed version of the same text data.

1-12
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Raw Data
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Load the example data. The file weatherReports. csv contains weather reports,
including a text description and categorical labels for each event.

filename = "weatherReports.csv";
data = readtable(filename, 'TextType',

'string');

Extract the text data from the field event narrative, and the label data from the field

event type.

textData = data.event narrative;
labels = data.event type;

textData(1:10)
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ans =

10x1 string array

"Large tree down between Plantersville and Nettleton."

"One to two feet of deep standing water developed on a street on the Winthrop Unive
"NWS Columbia relayed a report of trees blown down along Tom Hall St."

"Media reported two trees blown down along I-40 in the 0ld Fort area."

"A few tree limbs greater than 6 inches down on HWY 18 in Roseland."

"Awning blown off a building on Lamar Avenue. Multiple trees down near the interse
"Quarter size hail near Rosemark."

"Tin roof ripped off house on 0ld Memphis Road near Billings Drive. Several large -
"Powerlines down at Walnut Grove and Cherry Lane roads."

Create Tokenized Documents

Create an array of tokenized documents.

cleanedDocuments = tokenizedDocument(textData);
cleanedDocuments(1:10)

ans =
10x1

8
39
14
14

0
15
20

6
21
10

tokenizedDocument:

tokens: Large tree down between Plantersville and Nettleton

tokens: One to two feet of deep standing water developed on a street on the Win:
tokens: NWS Columbia relayed a report of trees blown down along Tom Hall St
tokens: Media reported two trees blown down along I-40 in the 0ld Fort area
tokens:

tokens: A few tree limbs greater than 6 inches down on HWY 18 in Roseland
tokens: Awning blown off a building on Lamar Avenue . Multiple trees down near
tokens: Quarter size hail near Rosemark .

tokens: Tin roof ripped off house on 0ld Memphis Road near Billings Drive . Sev¢
tokens: Powerlines down at Walnut Grove and Cherry Lane roads

Lemmatize the words using normalizeWords. To improve lemmatization, first add part
of speech details to the documents using addPart0fSpeechDetails.

cleanedDocuments = addPartOfSpeechDetails(cleanedDocuments);
cleanedDocuments = normalizeWords(cleanedDocuments, 'Style', 'lemma');
cleanedDocuments(1:10)

ans =

10x1 tokenizedDocument:

1-14
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8 tokens: large tree down between plantersville and nettleton

39 tokens: one to two foot of deep standing water develop on a street on the winth
14 tokens: nws columbia relay a report of tree blow down along tom hall st

14 tokens: medium report two tree blow down along i-40 in the old fort area

0 tokens:

15 tokens: a few tree limb great than 6 inch down on hwy 18 in roseland

20 tokens: awning blow off a building on lamar avenue . multiple tree down near the
6 tokens: quarter size hail near rosemark .

21 tokens: tin roof rip off house on old memphis road near billings drive . severa
10 tokens: powerlines down at walnut grove and cherry lane road

Erase the punctuation from the documents.

cleanedDocuments = erasePunctuation(cleanedDocuments);
cleanedDocuments(1:10)

ans =
10x1 tokenizedDocument:

7 tokens: large tree down between plantersville and nettleton
37 tokens: one to two foot of deep standing water develop on a street on the winth
13 tokens: nws columbia relay a report of tree blow down along tom hall st

13 tokens: medium report two tree blow down along i40 in the old fort area

0 tokens:

14 tokens: a few tree limb great than 6 inch down on hwy 18 in roseland

18 tokens: awning blow off a building on lamar avenue multiple tree down near the
5 tokens: quarter size hail near rosemark

19 tokens: tin roof rip off house on old memphis road near billings drive several °
9 tokens: powerlines down at walnut grove and cherry lane road

Words like "a", "and", "to", and "the" (known as stop words) can add noise to data.
Remove a list of stop words using the removeStopWords function.

cleanedDocuments = removeStopWords(cleanedDocuments);
cleanedDocuments(1:10)

ans =
10x1 tokenizedDocument:

5 tokens: large tree down plantersville nettleton

18 tokens: two foot deep standing water develop street winthrop university campus
10 tokens: nws columbia relay report tree blow down tom hall st

10 tokens: medium report two tree blow down i40 old fort area

1-15
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0 tokens:

10 tokens: few tree limb great 6 inch down hwy 18 roseland

13 tokens: awning blow off building lamar avenue multiple tree down near intersect:
5 tokens: quarter size hail near rosemark

16 tokens: tin roof rip off house old memphis road near billings drive several lar
7 tokens: powerlines down walnut grove cherry lane road

Remove words with 2 or fewer characters, and words with 15 or greater characters.

cleanedDocuments = removeShortWords (cleanedDocuments,2);
cleanedDocuments = removelLongWords (cleanedDocuments,15);
cleanedDocuments(1:10)

ans =
10x1 tokenizedDocument:

5 tokens: large tree down plantersville nettleton
18 tokens: two foot deep standing water develop street winthrop university campus
9 tokens: nws columbia relay report tree blow down tom hall
10 tokens: medium report two tree blow down i40 old fort area
0 tokens:
8 tokens: few tree limb great inch down hwy roseland
13 tokens: awning blow off building lamar avenue multiple tree down near intersect:
5 tokens: quarter size hail near rosemark
16 tokens: tin roof rip off house old memphis road near billings drive several lar
7 tokens: powerlines down walnut grove cherry lane road

Create Bag-of-Words Model

Create a bag-of-words model.

cleanedBag bagO0fWords (cleanedDocuments)

cleanedBag =
bagOfWords with properties:

Counts: [36176x18469 double]
Vocabulary: [1x18469 string]
NumWords: 18469
NumDocuments: 36176

Remove words that do not appear more than two times in the bag-of-words model.
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cleanedBag removeInfrequentWords(cleanedBag,?2)

cleanedBag =
bag0fWords with properties:

Counts: [36176%x6974 double]
Vocabulary: [1x6974 string]
NumWords: 6974
NumDocuments: 36176

Some preprocessing steps such as removeInfrequentWords leaves empty documents in
the bag-of-words model. To ensure that no empty documents remain in the bag-of-words
model after preprocessing, use removeEmptyDocuments as the last step.

Remove empty documents from the bag-of-words model and the corresponding labels
from labels.

[cleanedBag,idx] = removeEmptyDocuments(cleanedBag);
labels(idx) = [1];
cleanedBag

cleanedBag =
bagOfWords with properties:

Counts: [28137x6974 double]
Vocabulary: [1x6974 string]
NumWords: 6974
NumDocuments: 28137

Create a Preprocessing Function

It can be useful to create a function which performs preprocessing so you can prepare
different collections of text data in the same way. For example, you can use a function so
that you can preprocess new data using the same steps as the training data.

Create a function which tokenizes and preprocesses the text data so it can be used for
analysis. The function preprocessWeatherNarratives, performs the following steps:

1 Tokenize the text using tokenizedDocument.
2 Lemmatize the words using normalizeWords.
3 Erase punctuation using erasePunctuation.

1-17
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4 Remove a list of stop words (such as "and", "of", and "the") using removeStopWords.
5 Remove words with 2 or fewer characters using removeShortWords.
6 Remove words with 15 or more characters using removeLongWords.

Use the example preprocessing function preprocessWeatherNarratives to prepare
the text data.

newText = "A tree is downed outside Apple Hill Drive, Natick";
newDocuments = preprocessWeatherNarratives(newText)

newDocuments =
tokenizedDocument:

7 tokens: tree down outside apple hill drive natick

Compare with Raw Data

Compare the preprocessed data with the raw data.

rawDocuments = tokenizedDocument(textData);
rawBag = bag0fWords(rawDocuments)

rawBag =
bagOfWords with properties:

Counts: [36176x23302 double]
Vocabulary: [1x23302 string]
NumWords: 23302
NumDocuments: 36176

Calculate the reduction in data.

numWordsCleaned = cleanedBag.NumWords;
numWordsRaw = rawBag.NumWords;
reduction = 1 - numWordsCleaned/numWordsRaw

reduction = 0.7007

Compare the raw data and the cleaned data by visualizing the two bag-of-words models
using word clouds.

figure
subplot(1,2,1)
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wordcloud(rawBag) ;
title("Raw Data")
subplot(1,2,2)
wordcloud(cleanedBag) ;
title("Cleaned Data")

Raw Data

corusen  Gouned
Highway damage
s BCNOSS mies

oo g mph ang

repertedm
Rﬂad tO wind e

' trees n sn'EJi'f'

|

due

cower @ [ d " free
mamal  OhET Dn

blown & 1 O ~ ks
.A:'IJI'Il‘:.I'

""" The"fy " s
dﬂwﬂthe Fell :
éﬂ::ulhhnt._,r was qust A

were”‘??’rw rach

measured

= inchesym

WIr'IdS cecuras
thundersionm -

egtimaied

Preprocessing Function

Cleaned Data

NaEmenoeia

damage

=L s
ATI

estimate mph ﬁiﬂ;ﬁw
measure =" .- .nc-rth
ter!'nede roa J

water

SnDW. lire: OGour
nesiy WINAEIOW

0 B rain snowda
aread t siFe
o=
hour 51 =' re

ore [€ PO e
mile; N near”i
.h_lghwaﬂnch hail...

fall T w gloam

pewer d ow nﬂeed

flooding couse g

several cou nty

coutn GUST . quscer
thunderstorm

WHRSTERCEIN iy

The function preprocessWeatherNarratives, performs the following steps in order:

1 Tokenize the text using tokenizedDocument.

2 Lemmatize the words using normalizeWords.

3  Erase punctuation using erasePunctuation.
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4 Remove a list of stop words (such as "and", "of", and "the") using removeStopWords.
5 Remove words with 2 or fewer characters using removeShortWords.
6 Remove words with 15 or more characters using removeLongWords.

function documents = preprocessWeatherNarratives(textData)

% Tokenize the text.
documents = tokenizedDocument (textData);

% Lemmatize the words. To improve lemmatization, first use
% addPartOfSpeechDetails.

documents = addPartOfSpeechDetails(documents);

documents = normalizeWords(documents, 'Style', 'lemma');

% Erase punctuation.
documents = erasePunctuation(documents);

% Remove a list of stop words.
documents = removeStopWords(documents);

% Remove words with 2 or fewer characters, and words with 15 or more
% characters.

documents = removeShortWords(documents,2);

documents = removelLongWords(documents,15);

end

See Also

addPart0fSpeechDetails | bag0OfWords | erasePunctuation | normalizeWords |
removeEmptyDocuments | removeInfrequentWords | removeLongWords |
removeShortWords | removeStopWords | tokenizedDocument | wordcloud

Related Examples

. “Extract Text Data from Files” on page 1-2

. “Create Simple Text Model for Classification” on page 2-2
. “Visualize Text Data Using Word Clouds” on page 3-2

. “Analyze Text Data Containing Emojis” on page 2-35

. “Analyze Text Data Using Topic Models” on page 2-18



See Also

“Analyze Text Data Using Multiword Phrases” on page 2-9
“Classify Text Data Using Deep Learning” on page 2-53
“Train a Sentiment Classifier” on page 2-43
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This example shows how to parse HTML code and extract the text content from particular
elements.

Parse HTML Code

Read HTML code from the URL https://www.mathworks.com/help/textanalytics
using webread.

url = "https://www.mathworks.com/help/textanalytics";
code = webread(url);

Parse the HTML code using htmlTree.
tree = htmlTree(code);

View the HTML element name of the tree.
tree.Name

ans =
"HTML"

View the child elements of the tree. The children are subtrees of tree.
tree.Children

ans =
4x1 htmlTree:

<HEAD><TITLE>Text Analytics Toolbox Documentation</TITLE><META charset="utf-8"/><M|

<BODY id="responsive offcanvas"><!-- Mobile TopNav: Start --><DIV class="header vi

Extract Text from HTML Tree
To extract text directly from the HTML tree, use extractHTMLText.

str = extractHTMLText(tree)

str =
"Text Analytics Toolbox™ provides algorithms and visualizations for preprocessing,
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Text Analytics Toolbox includes tools for processing raw text from sources such a

Using machine learning techniques such as LSA, LDA, and word embeddings, you can -

Find HTML Elements

To find particular elements of an HTML tree, use findElement. Find all the hyperlinks in
the HTML tree. In HTML, hyperlinks use the "A" tag.

selector
subtrees

“A";

View the first few subtrees.

subtrees(1:20)

ans =
20x1

<A
<A
<A
<A
<A
<A
<A
<A
<A
<A
<A
<A
<A
<A
<A
<A
<A
<A
<A
<A

htmlTree:

findElement(tree,selector);

class="svg link navbar-brand" href="https://www.mathworks.com?s tid=gn logo"><II
class="mwa-nav_login" href="https://www.mathworks.com/login?uri=http://www.mathy

href="https:
href="https:
href="https:
href="https:
href="https:
href="https:
href="https:
href="https:
href="https:
href="https:

/ /www

//www .
//www .
//www .
//www .
//www .
//www .

//www .
//www .
//www .

mathworks.
mathworks.
mathworks.
mathworks.
mathworks.
mathworks.
.mathworks.
mathworks.
mathworks.
mathworks.

com/products.html?s tid=gn ps">Products</A>
com/solutions.html?s tid=gn sol">Solutions</A>
com/academia.html?s tid=gn acad">Academia</A>
com/support.html?s tid=gn supp">Support</A>
com/matlabcentral/?s tid=gn mlc">Community</A>
com/company/events.html?s tid=gn ev">Events</A>
com/company/aboutus/contact us.html?s tid=gn_cntus":
com/store?s cid=store top nav&amp;s tid=gn store">H
com/company/aboutus/contact us.html?s tid=gn_cntus":
com/store?s cid=store top nav&amp;s tid=gn store">H

class="mwa-nav_login" href="https://www.mathworks.com/login?uri=http://www.mathy
class="svg link pull-left" href="https://www.mathworks.com?s tid=gn logo"><IMG :

href="https
href="https
href="https
href="https
href="https
href="https

2/ /www.

2/ /www

2/ /www.
2/ /www.
2/ /www.
2/ /www.

mathworks.
.mathworks.
mathworks.
mathworks.
mathworks.
mathworks.

com/products.html?s tid=gn ps">Products</A>
com/solutions.html?s tid=gn sol">Solutions</A>
com/academia.html?s tid=gn acad">Academia</A>
com/support.html?s tid=gn supp">Support</A>
com/matlabcentral/?s tid=gn mlc">Community</A>
com/company/events.html?s tid=gn ev">Events</A>

Create a word cloud from the text of the hyperlinks.
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str = extractHTMLText(subtrees);
figure

wordcloud(str);
title("Hyperlinks")
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Get HTML Attributes

Get the class attributes from the paragraph elements in the HTML tree.

subtrees = findElement(tree,'p');
attr = "class";
str = getAttribute(subtrees,attr)

str = 21x1 string array
<missing>
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<missing>

"add _margin 5"
<missing>
<missing>
<missing>
<missing>
<missing>
"category desc"
"category desc"
"category desc"
"category desc"
<missing>
<missing>
<missing>
“text-center"
<missing>
<missing>
<missing>
"copyright"
<missing>

Create a word cloud from the text contained in paragraph elements with class
"category desc".

subtrees = findElement(tree, 'p.category desc');
str = extractHTMLText(subtrees);

figure

wordcloud(str);
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See Also

extractHTMLText | findElement | getAttribute | htmlTree |
tokenizedDocument

Related Examples

. “Prepare Text Data for Analysis” on page 1-12

. “Create Simple Text Model for Classification” on page 2-2
. “Visualize Text Data Using Word Clouds” on page 3-2

. “Analyze Text Data Using Topic Models” on page 2-18
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See Also

“Analyze Text Data Using Multiword Phrases” on page 2-9
“Classify Text Data Using Deep Learning” on page 2-53
“Train a Sentiment Classifier” on page 2-43
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Correct Spelling Using Edit Distance Searchers
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This example shows how to correct spelling using edit distance searchers and a
vocabulary of known words.

If you have misspelled words in a collection of text, then you can use edit distance
searchers to find the nearest correctly spelled words to a given vocabulary. To correct the
spelling of misspelled words in documents, replace them with the nearest neighbors in
the vocabulary.

Lemmatization with normalizeWords and word2vec requires correctly spelled words to
work. Use edit distance searchers to find the nearest correctly spelled word to misspelled
words according to an edit distance. For example, the number of adjacent grapheme
swaps and grapheme insertions, deletions, and substitutions.

Load Data

Create a vocabulary of known words. Download the Spell Checking Oriented Word Lists
(SCOWL) from https://sourceforge.net/projects/wordlist/. Import the words from the
downloaded data using the supporting function scowlWordList.

folderName = "scowl-2018.04.16";

maxSize = 60;
vocabulary = scowlWordList(folderName, 'english',maxSize);

View the number of words in the vocabulary.
numWords = numel(vocabulary)
numWords = 98129

Create Simple Spelling Corrector

Using the imported vocabulary, create an edit distance searcher with a maximum distance
of 2. For better results, allow for adjacent grapheme swaps by setting the 'SwapCost'
option to 1. For large vocabularies, this can take a few minutes.

maxDist = 2;
eds = editDistanceSearcher(vocabulary,maxDist, 'SwapCost',1);

This edit distance searcher is case sensitive which means that changing the case of
characters contributes to the edit distance. For example, the searcher can find the


https://sourceforge.net/projects/wordlist/

Correct Spelling Using Edit Distance Searchers

neighbor "testing" for the word "tseting" because it has edit distance 1 (one swap), but
not of the word "TSeTiNG" because it has edit distance 6.

Correct Spelling

Correct the spelling of misspelled words in an array of tokenized documents by selecting
the misspelled words and finding the nearest neighbors in the edit distance searcher.

Create a tokenized document object containing typos and spelling mistakes.

str = "An exmaple dccoument with typos and averyunusualword.";
document = tokenizedDocument(str)

document =
tokenizedDocument:

8 tokens: An exmaple dccoument with typos and averyunusualword .

Convert the documents to a string array of words using the string function.

words

string(document)

words = Ix8 string array
"An" "exmaple" "dccoument" "with" "typos" "and" "averyunusualwor¢

Find the words that need correction. To ignore words that are correctly spelled, find the
indices of the words already in the vocabulary. To ignore punctuation and complex tokens
such as email addresses, find the indices of the words which do not have the token types
"letters" or "other". Get the token details from the document using the tokenDetails
function.

tdetails = tokenDetails(document);
idxVocabularyWords = ismember(tdetails.Token,eds.Vocabulary);

idxComplexTokens = ...
tdetails.Type ~= "letters" & ...
tdetails.Type ~= "other";
idxWordsToCheck = ...
~idxVocabularyWords & ...
~idxComplexTokens

idxWordsToCheck = 8x1 logical array

1-29



1 fextData Preparation

1-30

[ocNENoNoNoN il

Find the numeric indices of the words and view the corresponding words.

idxWordsToCheck = find(idxWordsToCheck)
idxWordsToCheck = 4x1

1

2

3

7

wordsToCheck = words(idxWordsToCheck)

wordsToCheck = 1x4 string array
"An" "exmaple" "dccoument" "averyunusualword"

Notice that the word "An" is flagged as a word to check. This word is flagged because the
vocabulary does not contain the word "An" with an uppercase "A". A later section in the
example shows how to create a case insensitive spelling corrector.

Find the nearest words and their distances using the knnsearch function with the edit
distance searcher.

[idxNearestWords,d] = knnsearch(eds,wordsToCheck)
idxNearestWords = 4x1

165

1353

1152
NaN
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d = 4x1

SN =

In

If any of the words are not found in the searcher, then the function returns index NaN with
distance Inf. The word "averyunusualword" does not have a match within edit distance 2,
so the function returns the index NaN for that word.

Find the indices of the words with positive finite edit distances.

idxMatches = ~isnan(idxNearestWords)

idxMatches = 4x1 logical array

O R

Get the indices of the words with matches in the searcher and view the corresponding
corrected words in the vocabulary.

idxCorrectedWords = idxNearestWords (idxMatches)

idxCorrectedWords = 3x1I

165
1353
1152

correctedWords eds.Vocabulary(idxCorrectedWords)

correctedWords = 1Ix3 string array
"an" "example" "document"

Replace the misspelled words that have matches with the corrected words.

idxToCorrect = idxWordsToCheck(idxMatches);
words (idxToCorrect) = correctedWords
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words = 1Ix8 string array
"an" "example" "document" "with" "typos" "and" "averyunusualword'

To create a tokenized document of these words, use the tokenizedDocument function
and set 'TokenizedMethod' to 'none’.

document = tokenizedDocument(words, 'TokenizeMethod', 'none')
document =
tokenizedDocument:

8 tokens: an example document with typos and averyunusualword .

The next section shows how to correct the spelling of multiple documents at once by
creating a custom spelling correction function and using docfun.

Create Spelling Correction Function

To correct the spelling in multiple documents at once, create a custom function using the
code from the previous section and use this function with the docfun function.

Create a function that takes an edit distance searcher, a string array of words, and the
corresponding table of token details as inputs and outputs the corrected words. The
correctSpelling function, listed at the end of the example, corrects the spelling in a
string array of words using the corresponding token details and an edit distance searcher.

To use this function with the docfun function, create a function handle that takes a string
array of words and the corresponding table of token details as the inputs.

func = @(words,tdetails) correctSpelling(eds,words,tdetails);

Correct the spelling of an array of tokenized documents using docfun with the function
handle func.

str = [
"Here is some reallyu badly wrirten texct."
"Some moree mitsakes here too."];
documents = tokenizedDocument(str);
documentsCorrected = docfun(func,documents)

documentsCorrected =
2x1 tokenizedDocument:
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8 tokens: here is some really badly written text .
6 tokens: come more mistakes here too .

Note that uppercase characters can get corrected to different lowercase characters. For
example, the word "Some" can get corrected to "come". If multiple words in the edit
distance searcher vocabulary have the same edit distance to the input, then the function
outputs the first result it found. For example, the words "come" and "some" both have edit
distance 1 from the word "Some".

The next section shows how to create an spelling corrector that is case insensitive.
Create Case Insensitive Spelling Corrector

To prevent differences in case clashing with other substitutions, create an edit distance
searcher with the vocabulary in lower case and convert the documents to lowercase
before using the edit distance searcher.

Convert the vocabulary to lowercase. This operation can introduce duplicate words,
remove them by taking the unique values only.

vocabularyLower
vocabularyLower

lower(vocabulary);
unique(vocabularylLower);

Create an edit distance searcher using the lowercase vocabulary using the same options
as before. This can take a few minutes to run.

maxDist = 2;
eds = editDistanceSearcher(vocabularylLower,maxDist, 'SwapCost',1);

Use the edit distance searcher to correct the spelling of the words in tokenized document.
To use the case insensitive spelling corrector, convert the documents to lowercase.

documentsLower = lower(documents);
Correct the spelling using the new edit distance searcher using same steps as before.

func = @(words,tdetails) correctSpelling(eds,words,tdetails);
documentsCorrected = docfun(func,documentsLower)

documentsCorrected =
2x1 tokenizedDocument:
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8 tokens: here is some really badly written text
6 tokens: some more mistakes here too .

Here, the word "Some" in the original text is converted to "some" before being input to
the spelling corrector. The corresponding word "some" is unaffected by the searcher as
the word some occurs in the vocabulary.

Spelling Correction Function

The correctSpelling function corrects the spelling in a string array of words using the
corresponding token details and an edit distance searcher. You can use this function with
docfun to correct the spelling of multiple documents at once.

function words = correctSpelling(eds,words,tdetails)

% Get indices of misspelled words ignoring complex tokens.
idxVocabularyWords = ismember(tdetails.Token,eds.Vocabulary);

idxComplexTokens = ...
tdetails.Type ~= "letters" & ...
tdetails.Type ~= "other";
idxWordsToCheck = ...
~idxVocabularyWords & ...
~idxComplexTokens;

% Convert to numeric indices.
idxWordsToCheck = find(idxWordsToCheck);

% Find nearest words.
wordsToCheck = words(idxWordsToCheck) ;
idxNearestWords = knnsearch(eds,wordsToCheck);

% Find words with matches.
idxMatches = ~isnan(idxNearestWords);

% Get corrected words.
idxCorrectedWords = idxNearestWords(idxMatches);
correctedWords = eds.Vocabulary(idxCorrectedWords);

% Correct words.
idxToCorrect = idxWordsToCheck(idxMatches);
words (idxToCorrect) = correctedWords;



See Also

end

See Also

docfun | editDistance | editDistanceSearcher | knnsearch | tokenDetails |
tokenizedDocument

More About

. “Prepare Text Data for Analysis” on page 1-12

. “Create Simple Text Model for Classification” on page 2-2
. “Visualize Text Data Using Word Clouds” on page 3-2

. “Analyze Text Data Using Topic Models” on page 2-18

. “Analyze Text Data Using Multiword Phrases” on page 2-9
. “Classify Text Data Using Deep Learning” on page 2-53

. “Train a Sentiment Classifier” on page 2-43
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* “Create Simple Text Model for Classification” on page 2-2

* “Analyze Text Data Using Multiword Phrases” on page 2-9

* “Analyze Text Data Using Topic Models” on page 2-18

* “Choose Number of Topics for LDA Model” on page 2-25

* “Compare LDA Solvers” on page 2-30

* “Analyze Text Data Containing Emojis” on page 2-35

* “Train a Sentiment Classifier” on page 2-43

» “Classify Text Data Using Deep Learning” on page 2-53

* “Classify Text Data Using Convolutional Neural Network” on page 2-76
* “Classify Out-of-Memory Text Data Using Deep Learning” on page 2-87
* “Pride and Prejudice and MATLAB” on page 2-94

*  “Word-By-Word Text Generation Using Deep Learning” on page 2-101

* “Classify Out-of-Memory Text Data Using Custom Mini-Batch Datastore”
on page 2-108
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2-2

This example shows how to train a simple text classifier on word frequency counts using a
bag-of-words model.

You can create a simple classification model which uses word frequency counts as
predictors. This example trains a simple classification model to predict the event type of
weather reports using text descriptions.

To reproduce the results of this example, set rng to 'default’.
rng('default")
Load and Extract Text Data

Load the example data. The file weatherReports. csv contains weather reports,
including a text description and categorical labels for each event.

filename = "weatherReports.csv";
data = readtable(filename, 'TextType','string');
head(data)

ans=8x16 table
Time event id state event type d:

22-Jul-2016 16:10:00 6.4433e+05 "MISSISSIPPI" "Thunderstorm Wind"
15-Jul-2016 17:15:00 6.5182e+05 "SOUTH CAROLINA" "Heavy Rain"
15-Jul-2016 17:25:00 6.5183e+05 "SOUTH CAROLINA" "Thunderstorm Wind"
16-Jul-2016 12:46:00 6.5183e+05 "NORTH CAROLINA" "Thunderstorm Wind"
15-Jul-2016 14:28:00 6.4332e+05 "MISSOURI" "Hail"
15-Jul-2016 16:31:00 6.4332e+05 "ARKANSAS" "Thunderstorm Wind"
15-Jul-2016 16:03:00 6.4343e+05 "TENNESSEE" "Thunderstorm Wind"
15-Jul-2016 17:27:00 6.4344e+05 "TENNESSEE" "Hail"

Remove rows with empty reports.

idx = strlength(data.event narrative) == 0;

data(idx,:) = [1;

Convert the labels in the event type column of the table to categorical and view the
distribution of the classes in the data using a histogram.
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Frequency

data.event type = categorical(data.event type);
figure

h = histogram(data.event type);

xlabel("Class")

ylabel("Frequency")

title("Class Distribution")

Class Distribution
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Class

The classes of the data are imbalanced, with several classes containing few observations.
To ensure that you can partition the data so that the partitions contain observations for

each class, remove any classes which appear fewer than ten times.

Get the frequency counts of the classes and their names from the histogram.
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classCounts = h.BinCounts;
classNames = h.Categories;

Find the classes containing fewer than ten observations and remove these infrequent
classes from the data.

idxLowCounts = classCounts < 10;

infrequentClasses = classNames(idxLowCounts);

idxInfrequent = ismember(data.event type,infrequentClasses);
data(idxInfrequent,:) = [];

Partition the data into a training partition and a held-out test set. Specify the holdout
percentage to be 10%.

cvp = cvpartition(data.event type, 'Holdout',0.1);
dataTrain = data(cvp.training,:);
dataTest = data(cvp.test,:);

Extract the text data and labels from the tables.

textDataTrain = dataTrain.event narrative;
textDataTest = dataTest.event narrative;
YTrain = dataTrain.event type;

YTest = dataTest.event type;

Prepare Text Data for Analysis

Create a function which tokenizes and preprocesses the text data so it can be used for
analysis. The function preprocessWeatherNarratives, performs the following steps in
order:

Tokenize the text using tokenizedDocument.

Lemmatize the words using normalizeWords.

Erase punctuation using erasePunctuation.

Remove a list of stop words (such as "and", "of", and "the") using removeStopWords.
Remove words with 2 or fewer characters using removeShortWords.

Remove words with 15 or more characters using removelLongWords.

S U A W N R

Use the example preprocessing function preprocessWeatherNarratives to prepare
the text data.

documents

= preprocessWeatherNarratives(textDataTrain);
documents(1:5)
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ans =
5x1 tokenizedDocument:

5 tokens: large tree down plantersville nettleton
18 tokens: two foot deep standing water develop street winthrop university campus
9 tokens: nws columbia relay report tree blow down tom hall
10 tokens: medium report two tree blow down i40 old fort area
8 tokens: few tree limb great inch down hwy roseland

Create a bag-of-words model from the tokenized documents.
bag = bag0OfWords(documents)

bag =
bag0fWords with properties:

Counts: [25316%x17524 double]
Vocabulary: [1x17524 string]
NumWords: 17524
NumDocuments: 25316

Remove words from the bag-of-words model that do not appear more than two times in
total. Remove any documents containing no words from the bag-of-words model, and
remove the corresponding entries in labels.

bag = removelInfrequentWords(bag,2);
[bag,idx] = removeEmptyDocuments(bag);
YTrain(idx) = [];

bag

bag =
bagO0fWords with properties:

Counts: [25315x6534 double]
Vocabulary: [1x6534 string]
NumWords: 6534
NumDocuments: 25315
Train Supervised Classifier

Train a supervised classification model using the word frequency counts from the bag-of-
words model and the labels.
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Train a multiclass linear classification model using fitcecoc. Specify the Counts
property of the bag-of-words model to be the predictors, and the event type labels to be
the response. Specify the learners to be linear. These learners support sparse data input.

XTrain = bag.Counts;
mdl = fitcecoc(XTrain,YTrain, 'Learners', 'linear’')

mdl =
classreg.learning.classif.CompactClassificationECOC
ResponseName: 'Y
ClassNames: [1x39 categoricall
ScoreTransform: 'none'
BinarylLearners: {741x1 cell}
CodingMatrix: [39x741 double]

Properties, Methods

For a better fit, you can try specifying different parameters of the linear learners. For
more information on linear classification learner templates, see templateLinear.

Test Classifier

Predict the labels of the test data using the trained model and calculate the classification
accuracy. The classification accuracy is the proportion of the labels that the model
predicts correctly.

Preprocess the test data using the same preprocessing steps as the training data. Encode
the resulting test documents as a matrix of word frequency counts according to the bag-
of-words model.

documentsTest = preprocessWeatherNarratives(textDataTest);
XTest = encode(bag,documentsTest);

Predict the labels of the test data using the trained model and calculate the classification
accuracy.

YPred = predict(mdl,XTest);
acc = sum(YPred == YTest)/numel(YTest)

acc 0.8808
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Predict Using New Data

Classify the event type of new weather reports. Create a string array containing the new
weather reports.

str = [ ...
"A large tree is downed and blocking traffic outside Apple Hill."
"Damage to many car windshields in parking lot."
"Lots of water damage to computer equipment inside the office."];
documentsNew = preprocessWeatherNarratives(str);
XNew = encode(bag,documentsNew) ;
labelsNew = predict(mdl,XNew)

labelsNew = 3x1 categorical array
Thunderstorm Wind
Thunderstorm Wind
Flash Flood

Example Preprocessing Function
The function preprocessWeatherNarratives, performs the following steps in order:

Tokenize the text using tokenizedDocument.

Lemmatize the words using normalizeWords.

Erase punctuation using erasePunctuation.

Remove a list of stop words (such as "and", "of", and "the") using removeStopWords.
Remove words with 2 or fewer characters using removeShortWords.

o U A W N R

Remove words with 15 or more characters using removelLongWords.

function documents = preprocessWeatherNarratives(textData)

% Tokenize the text.
documents = tokenizedDocument (textData);

% Lemmatize the words. To improve lemmatization, first use
% addPartOfSpeechDetails.

documents = addPartOfSpeechDetails(documents);

documents = normalizeWords(documents, 'Style’', 'lemma');

% Erase punctuation.
documents = erasePunctuation(documents);
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% Remove a list of stop words.
documents = removeStopWords(documents);

% Remove words with 2 or fewer characters, and words with 15 or more
% characters.

documents = removeShortWords (documents,?2);
documents = removelLongWords(documents,15);
end

See Also

addPart0fSpeechDetails | bag0OfWords | encode | erasePunctuation |
normalizeWords | removelLongWords | removeShortWords | removeStopWords |
tokenizedDocument | wordcloud

Related Examples

“Analyze Text Data Using Topic Models” on page 2-18

“Analyze Text Data Using Multiword Phrases” on page 2-9
“Analyze Text Data Containing Emojis” on page 2-35

“Train a Sentiment Classifier” on page 2-43

“Classify Text Data Using Deep Learning” on page 2-53
“Generate Text Using Deep Learning” (Deep Learning Toolbox)
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Analyze Text Data Using Multiword Phrases

This example shows how to analyze text using n-gram frequency counts.

N-Grams

An n-gram is a tuple of n consecutive words. For example, a bigram (the case when n = 2)
is a pair of consecutive words such as "heavy rainfall". A unigram (the case when n = 1) is
a single word. A bag-of-n-grams model records the number of times that different n-grams
appear in document collections.

Using a bag-of-n-grams model, you can retain more information on word ordering in the
original text data. For example, a bag-of-n-grams model is better suited for capturing
short phrases which appear in the text, such as "heavy rainfall" and "thunderstorm
winds".

To create a bag-of-n-grams model, use bag0fNgrams. You can input bagOfNgrams
objects into other Text Analytics Toolbox functions such as wordcloud and fitlda.

Load and Extract Text Data

To reproduce the results of this example, set rng to 'default’.

rng('default')

Load the example data. The file weatherReports. csv contains weather reports,
including a text description and categorical labels for each event. Remove the rows with
empty reports.

filename = "weatherReports.csv";

data = readtable(filename, 'TextType', 'String');
idx = strlength(data.event narrative) == 0;
data(idx,:) = [1;

Extract the text data from the table and view the first few reports.

textData = data.event narrative;
textData(1:5)

ans = 5x1 string array
"Large tree down between Plantersville and Nettleton."
"One to two feet of deep standing water developed on a street on the Winthrop Unive
"NWS Columbia relayed a report of trees blown down along Tom Hall St."

2-9
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"Media reported two trees blown down along I-40 in the 0ld Fort area."
"A few tree limbs greater than 6 inches down on HWY 18 in Roseland."

Prepare Text Data for Analysis

Create a function which tokenizes and preprocesses the text data so it can be used for
analysis. The function preprocessWeatherNarratives listed at the end of the
example, performs the following steps:

Convert the text data to lowercase using Lower.

Tokenize the text using tokenizedDocument.

Erase punctuation using erasePunctuation.

Remove a list of stop words (such as "and", "of", and "the") using removeStopWords.
Remove words with 2 or fewer characters using removeShortWords.

Remove words with 15 or more characters using removeLongWords.

N o o A W N

Lemmatize the words using normalizeWords.

Use the example preprocessing function preprocessWeatherNarratives to prepare
the text data.

documents

= preprocessWeatherNarratives(textData);
documents(1:5)

ans =
5x1 tokenizedDocument:

(1,1) 5 tokens: large tree down plantersville nettleton

(2,1) 18 tokens: two foot deep standing water develop street winthrop unive..
(3,1) 9 tokens: nws columbia relayed report tree blow down tom hall

(4,1) 10 tokens: medium report two tree blow down 140 old fort area
(5,1) 8 tokens: few tree limb great inches down hwy roseland

Create Word Cloud of Bigrams

Create a word cloud of bigrams by first creating a bag-of-n-grams model using
bag0OfNgrams, and then inputting the model to wordcloud.

To count the n-grams of length 2 (bigrams), use bag0fNgrams with the default options.

bag = bag0fNgrams(documents)
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bag =

bagOfNgrams with properties:

Counts:
Vocabulary:
Ngrams:
NgramLengths:
NumNgrams:
NumDocuments:

Visualize the bag-of-n-grams model using a word cloud.

figure
wordcloud(bag);

[28138x117043 double]
[1x18409 string]
[117043%x2 string]

2

117043

28138

title("Weather Reports: Preprocessed Bigrams")
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Weather Reports: Preprocessed Bigrams
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Fit Topic Model to Bag-of-N-Grams

A Latent Dirichlet Allocation (LDA) model is a topic model which discovers underlying
topics in a collection of documents and infers the word probabilities in topics.

Create an LDA topic model with 10 topics using fitlda. The function fits an LDA model
by treating the n-grams as single words.

mdl = fitlda(bag,10);

Initial topic assignments sampled in 0.741989 seconds.

| Iteration | Time per | Relative | Training | Topic | Topic |
| | iteration | change in | perplexity | concentration | concentration |
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| | (seconds) | log(L) | | | iterations |
| 0 | 2.81 | | 2.043e+04 | 2.500 | 0 |
| 1| 3.62 | 6.8345e-02 | 1.083e+04 | 2.500 | 0 |
| 2 | 3.54 | 1.9129e-03 | 1.064e+04 | 2.500 | 0 |
| 3 3.79 | 2.4671e-04 | 1.061le+04 | 2.500 | 0 |
| 4 | 3.81 | 8.5912e-05 | 1.060e+04 | 2.500 | 0 |

Visualize the first four topics as word clouds.

figure
for i = 1:4

end

subplot(2,2,1)
wordcloud(mdl,1i);

title("LDA Topic " + i)
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The word clouds highlight commonly co-occuring bigrams in the LDA topics. The function
plots the bigrams with sizes according to their probabilities for the specified LDA topics.

Analyze Text Using Longer Phrases

To analyze text using longer phrases, specify the 'NGramLengths' option in
bagOfNgrams to be a larger value.

When working with longer phrases, it can be useful to keep stop words in the model. For
example, to detect the phrase "is not happy", keep the stop words "is" and "not" in the
model.

Preprocess the text. Erase the punctuation using erasePunctuation, and tokenize
using tokenizedDocument.
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cleanTextData = erasePunctuation(textData);
documents = tokenizedDocument(cleanTextData);

To count the n-grams of length 3 (trigrams), use bag0fNgrams and specify
'"NGramLengths' to be 3.

bag = bag0fNgrams(documents, 'NGramLengths',3);

Visualize the bag-of-n-grams model using a word cloud. The word cloud of trigrams better
shows the context of the individual words.

figure
wordcloud(bag);
title("Weather Reports: Trigrams")
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View the top 10 trigrams and their frequency counts using topkngrams.
tbl = topkngrams(bag,10)

tbl=10x3 table

Ngram Count NgramLength
"inches" "of" "snow" 2075 3
"across" "the" "county" 1318 3
"were" "blown" "down" 1189 3
"wind" "gust"” "of" 934 3
"A" “tree" "was" 860 3
"the" "intersection" "of" 812 3
"inches" "of" "rain" 739 3
"hail" "was" "reported" 648 3
"was" “blown" "down" 638 3
"and" "power" "lines" 631 3

Example Preprocessing Function
The function preprocessWeatherNarratives performs the following steps in order:

Convert the text data to lowercase using Lower.

Tokenize the text using tokenizedDocument.

Erase punctuation using erasePunctuation.

Remove a list of stop words (such as "and", "of", and "the") using removeStopWords.
Remove words with 2 or fewer characters using removeShortWords.

Remove words with 15 or more characters using removeLongWords.

N 6O o A W N R

Lemmatize the words using normalizeWords.

function [documents] = preprocessWeatherNarratives(textData)

% Convert the text data to lowercase.
cleanTextData = lower(textData);

% Tokenize the text.
documents = tokenizedDocument(cleanTextData);

% Erase punctuation.
documents = erasePunctuation(documents);



See Also

% Remove a list of stop words.
documents = removeStopWords(documents);

% Remove words with 2 or fewer characters, and words with 15 or greater
% characters.

documents
documents

removeShortWords (documents,?2);
removeLongWords (documents,15);

% Lemmatize the words.

documents = addPartOfSpeechDetails(documents);
documents = normalizeWords(documents, 'Style', 'lemma');
end

See Also

addPart0fSpeechDetails | bag0OfNgrams | bag0fWords | erasePunctuation |
fitlda | ldaModel | normalizeWords | removeLongWords | removeShortWords |
removeStopWords | tokenizedDocument | topkngrams | wordcloud

Related Examples

. “Create Simple Text Model for Classification” on page 2-2

. “Analyze Text Data Containing Emojis” on page 2-35

. “Analyze Text Data Using Topic Models” on page 2-18

. “Train a Sentiment Classifier” on page 2-43

. “Classify Text Data Using Deep Learning” on page 2-53

. “Generate Text Using Deep Learning” (Deep Learning Toolbox)
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This example shows how to use the Latent Dirichlet Allocation (LDA) topic model to
analyze text data.

A Latent Dirichlet Allocation (LDA) model is a topic model which discovers underlying
topics in a collection of documents and infers the word probabilities in topics.

To reproduce the results of this example, set rng to 'default’.
rng('default"')

Load and Extract Text Data

Load the example data. The file weatherReports. csv contains weather reports,
including a text description and categorical labels for each event.

data = readtable("weatherReports.csv", 'TextType', 'string');
head(data)

ans=8x16 table
Time event id state event type d:

22-Jul-2016 16:10:00 6.4433e+05 "MISSISSIPPI" "Thunderstorm Wind"
15-Jul-2016 17:15:00 6.5182e+05 "SOUTH CAROLINA" "Heavy Rain"
15-Jul-2016 17:25:00 6.5183e+05 "SOUTH CAROLINA" "Thunderstorm Wind"
16-Jul-2016 12:46:00 6.5183e+05 "NORTH CAROLINA" "Thunderstorm Wind"
15-Jul-2016 14:28:00 6.4332e+05 "MISSOURI" "Hail"

15-Jul-2016 16:31:00 6.4332e+05 "ARKANSAS™" "Thunderstorm Wind"
15-Jul-2016 16:03:00 6.4343e+05 "TENNESSEE" "Thunderstorm Wind"
15-Jul-2016 17:27:00 6.4344e+05 "TENNESSEE" "Hail"

Extract the text data from the field event _narrative.

textData = data.event narrative;
textData(1:10)

ans = 10x1 string array
"Large tree down between Plantersville and Nettleton."
"One to two feet of deep standing water developed on a street on the Winthrop Unive
"NWS Columbia relayed a report of trees blown down along Tom Hall St."
"Media reported two trees blown down along I-40 in the 0ld Fort area."
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"A few tree limbs greater than 6 inches down on HWY 18 in Roseland."

"Awning blown off a building on Lamar Avenue. Multiple trees down near the interse
"Quarter size hail near Rosemark."

"Tin roof ripped off house on 0ld Memphis Road near Billings Drive. Several large -
"Powerlines down at Walnut Grove and Cherry Lane roads."

Prepare Text Data for Analysis

Create a function which tokenizes and preprocesses the text data so it can be used for
analysis. The function preprocessText, listed at the end of the example, performs the
following steps in order:

Tokenize the text using tokenizedDocument.

Lemmatize the words using normalizeWords.

Erase punctuation using erasePunctuation.

Remove a list of stop words (such as "and", "of", and "the") using removeStopWords.
Remove words with 2 or fewer characters using removeShortWords.

A A W N MR

Remove words with 15 or more characters using removelLongWords.

Use the preprocessing function preprocessText to prepare the text data.

documents

= preprocessText (textData);
documents(1:5)

ans =
5x1 tokenizedDocument:

5 tokens: large tree down plantersville nettleton
18 tokens: two foot deep standing water develop street winthrop university campus
9 tokens: nws columbia relay report tree blow down tom hall
10 tokens: medium report two tree blow down i40 old fort area

0 tokens:

Create a bag-of-words model from the tokenized documents.
bag = bagOfWords(documents)

bag =
bagOfWords with properties:
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Counts: [36176x18469 double]
Vocabulary: [1x18469 string]
NumWords: 18469
NumDocuments: 36176

Remove words from the bag-of-words model that have do not appear more than two times
in total. Remove any documents containing no words from the bag-of-words model.

bag = removelInfrequentWords(bag,2);
bag = removeEmptyDocuments(bag)
bag =

bagOfWords with properties:

Counts: [28137x6974 double]
Vocabulary: [1x6974 string]
NumWords: 6974
NumDocuments: 28137

Fit LDA Model

Fit an LDA model with 7 topics. For an example showing how to choose the number of
topics, see “Choose Number of Topics for LDA Model” on page 2-25. To suppress
verbose output, set 'Verbose' to 0.

numTopics = 7;
mdl = fitlda(bag,numTopics, 'Verbose',0);

If you have a large dataset, then the stochastic approximate variational Bayes solver is
usually better suited as it can fit a good model in fewer passes of the data. The default
solver for fitlda (collapsed Gibbs sampling) can be more accurate at the cost of taking
longer to run. To use stochastic approximate variational Bayes, set the 'Solver' option
to 'savb'. For an example showing how to compare LDA solvers, see “Compare LDA
Solvers” on page 2-30.

Visualize Topics Using Word Clouds

You can use word clouds to view the words with the highest probabilities in each topic.
Visualize the first four topics using word clouds.

figure;
for topicldx = 1:4
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subplot(2,2,topicIdx)

wordcloud(mdl, topicIdx);

title("Topic " + topicIdx)
end
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Use transform to transform the documents into vectors of topic probabilities.

newDocument = tokenizedDocument("A tree is downed outside Apple Hill Drive,
topicMixture = transform(mdl, newDocument);

figure
bar(topicMixture)
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xlabel("Topic Index")
ylabel("Probability")
title("Document Topic Probabilities")
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Visualize multiple topic mixtures using stacked bar charts. Visualize the topic mixtures of
the first 5 input documents.

figure

topicMixtures = transform(mdl,documents(1:5));
barh(topicMixtures(1:5,:), 'stacked")

xlim([0 11)

title("Topic Mixtures")

xlabel("Topic Probability")
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ylabel("Document")
legend("Topic " + string(l:numTopics), 'Location', 'northeastoutside")

Topic Mixtures
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Preprocessing Function

The function preprocessText, performs the following steps in order:

Tokenize the text using tokenizedDocument.

Lemmatize the words using normalizeWords.

Erase punctuation using erasePunctuation.

Remove a list of stop words (such as "and", "of", and "the") using removeStopWords.
Remove words with 2 or fewer characters using removeShortWords.

gua A W N R
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6 Remove words with 15 or more characters using removeLongWords.

function documents = preprocessText(textData)

% Tokenize the text.
documents = tokenizedDocument(textData);

% Lemmatize the words.
documents addPart0fSpeechDetails(documents);
documents normalizeWords (documents, 'Style', 'lemma');

% Erase punctuation.
documents = erasePunctuation(documents);

% Remove a list of stop words.
documents = removeStopWords(documents);

% Remove words with 2 or fewer characters, and words with 15 or greater
% characters.

documents = removeShortWords(documents,2);

documents = removelLongWords(documents,15);

end

See Also

addPart0fSpeechDetails | bag0fWords | fitlda | ldaModel |
removeEmptyDocuments | removeInfrequentWords | removeStopWords |
tokenizedDocument | transform | wordcloud

Related Examples

. “Create Simple Text Model for Classification” on page 2-2

. “Analyze Text Data Containing Emojis” on page 2-35

. “Analyze Text Data Using Multiword Phrases” on page 2-9

. “Train a Sentiment Classifier” on page 2-43

. “Classify Text Data Using Deep Learning” on page 2-53

. “Generate Text Using Deep Learning” (Deep Learning Toolbox)
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Choose Number of Topics for LDA Model

This example shows how to decide on a suitable number of topics for a latent Dirichlet
allocation (LDA) model.

To decide on a suitable number of topics, you can compare the goodness-of-fit of LDA
models fit with varying numbers of topics. You can evaluate the goodness-of-fit of an LDA
model by calculating the perplexity of a held-out set of documents. The perplexity
indicates how well the model describes a set of documents. A lower perplexity suggests a
better fit.

To reproduce the results of this example, set rng to 'default’.
rng('default')
Extract and Preprocess Text Data

Load the example data. The file weatherReports. csv contains weather reports,
including a text description and categorical labels for each event. Extract the text data
from the field event narrative.

filename = "weatherReports.csv";
data = readtable(filename, 'TextType', 'string');
textData = data.event narrative;

Tokenize and preprocess the text data using the function
preprocessWeatherNarratives which is listed at the end of this example.

documents

= preprocessWeatherNarratives(textData);
documents(1:5)

ans =
5x1 tokenizedDocument:

(1,1) 5 tokens: large tree down plantersville nettleton

(2,1) 18 tokens: two foot deep standing water develop street winthrop unive..
(3,1) 9 tokens: nws columbia relayed report tree blow down tom hall

(4,1) 10 tokens: medium report two tree blow down 140 old fort area

(5,1) 0 tokens:

Set aside 10% of the documents at random for validation.

numDocuments = numel(documents);
cvp = cvpartition(numDocuments, 'HoldOut',0.1);
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documentsTrain = documents(cvp.training);
documentsValidation = documents(cvp.test);

Create a bag-of-words model from the training documents. Remove the words that do not
appear more than two times in total. Remove any documents containing no words.

bag = bagOfWords(documentsTrain);
bag = removelInfrequentWords(bag,2);
bag = removeEmptyDocuments(bag);

Choose Number of Topics

The goal is to choose a number of topics that minimize the perplexity is lowest compared
to other numbers of topics. This is not the only consideration: models fit with larger
numbers of topics may take longer to converge. To see the effects of the tradeoff,
calculate both goodness-of-fit and the fitting time. If the optimal number of topics is high,
then you might want to choose a lower value to speed up the fitting process.

Fit some LDA models for a range of values for the number of topics. Compare the fitting
time and the perplexity of each model on the held-out set of test documents. The
perplexity is the second output to the Logp function. To obtain the second output without
assigning the first output to anything, use the ~ symbol. The fitting time is the
TimeSinceStart value for the last iteration. This value is in the History struct of the
FitInfo property of the LDA model.

For a quicker fit, specify 'Solver' to be 'savb'. To suppress verbose output, set
'Verbose' to 0. This may take a few minutes to run.

numTopicsRange = [5 10 15 20 40];
for i = l:numel(numTopicsRange)
numTopics = numTopicsRange(i);

mdl = fitlda(bag,numTopics,
'Solver', 'savb',
'Verbose',0);

[~,validationPerplexity(i)] = logp(mdl,documentsValidation);
timeElapsed(i) = mdl.FitInfo.History.TimeSinceStart(end);
end

Show the perplexity and elapsed time for each number of topics in a plot. Plot the
perplexity on the left axis and the time elapsed on the right axis.

figure
yyaxis left
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plot(numTopicsRange,validationPerplexity, '+-"')
ylabel("Validation Perplexity")

yyaxis right
plot(numTopicsRange, timeElapsed, 'o-")
ylabel("Time Elapsed (s)")

legend(["Validation Perplexity" "Time Elapsed (s)"], 'Location', 'southeast')
xLlabel("Number of Topics")

540 T T T T T T ,,f‘-['-"
1 -
."'f}
.-""J i
530 | e ¢
1 "'_.-'
o
-
.-"-I-’ 1 ?
520 ~
= e _
lx';' I /e,-f’f 16 £
S 510 e ©
- 3]
o e le &
[ = 2 4o
2 ol / .
= 500 \ v E
0 4, E
= e / 4 =
490 1
1 a"f | 3
o
480 + x’“# ) o 1A
A // —+—Validation Perplexity =
+’/ —— Time Elapsed (s)
470 ' : ' ' ' ) 1
5 10 15 20 25 30 35 40

Mumber of Topics

The plot suggests that fitting a model with 10-20 topics may be a good choice. The
perplexity is low compared with the models with different numbers of topics. With this
solver, the elapsed time for this many topics is also reasonable. With different solvers, you
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may find that increasing the number of topics can lead to a better fit, but fitting the model
takes longer to converge.

Example Preprocessing Function
The function preprocessWeatherNarratives, performs the following steps in order:

Convert the text data to lowercase using Llower.

Tokenize the text using tokenizedDocument.

Erase punctuation using erasePunctuation.

Remove a list of stop words (such as "and", "of", and "the") using removeStopWords.
Remove words with 2 or fewer characters using removeShortWords.

Remove words with 15 or more characters using removelLongWords.

Lemmatize the words using normalizeWords.

N o A WN R

function [documents] = preprocessWeatherNarratives(textData)
% Convert the text data to lowercase.
cleanTextData = lower(textData);

% Tokenize the text.
documents = tokenizedDocument(cleanTextData);

% Erase punctuation.
documents = erasePunctuation(documents);

% Remove a list of stop words.
documents = removeStopWords(documents);

% Remove words with 2 or fewer characters, and words with 15 or greater
% characters.

documents = removeShortWords(documents,2);

documents = removelLongWords(documents,15);

% Lemmatize the words.

documents = addPartOfSpeechDetails(documents);
documents = normalizeWords(documents, 'Style', 'lemma');
end

See Also

addPart0fSpeechDetails | bag0fWords | bag0fWords | erasePunctuation |
fitlda | ldaModel | logp | normalizeWords | removeEmptyDocuments |



See Also

removeInfrequentWords | removeLongWords | removeShortWords |
removeStopWords | tokenizedDocument

Related Examples
. “Analyze Text Data Using Topic Models” on page 2-18
. “Compare LDA Solvers” on page 2-30
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Compare LDA Solvers

This example shows how to compare latent Dirichlet allocation (LDA) solvers by
comparing the goodness of fit and the time taken to fit the model.

To reproduce the results of this example, set rng to 'default’.
rng('default')

Extract and Preprocess Text Data

Load the example data. The file weatherReports. csv contains weather reports,
including a text description and categorical labels for each event. Extract the text data
from the field event narrative.

filename = "weatherReports.csv";
data = readtable(filename, 'TextType', 'string');
textData = data.event narrative;

Set aside 10% of the documents at random for validation.

numDocuments = numel(textData);

cvp = cvpartition(numDocuments, 'HoldOut',0.1);
textDataTrain = textData(training(cvp));
textDataValidation = textData(test(cvp));

Tokenize and preprocess the text data using the function preprocessText which is
listed at the end of this example.

documentsTrain = preprocessText(textDataTrain);
documentsValidation = preprocessText(textDataValidation);

Create a bag-of-words model from the training documents. Remove the words that do not
appear more than two times in total. Remove any documents containing no words.

bag = bagO0fWords(documentsTrain);
bag = removeInfrequentWords(bag,2);
bag = removeEmptyDocuments(bag);

Fit and Compare Models

For each of the LDA solvers, fit an LDA model with 60 topics. To distinguish the solvers
when plotting the results on the same axes, specify different line properties for each
solver.
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numTopics = 60;
solvers = ["cgs" "avb" "cvb0" "savb"];
'Linespecs = [II+_II II*_II IIX_II IIO_II];

For the validation data, create a bag-of-words model from the validation documents.

validationData = bagOfWords(documentsValidation);

For each of the LDA solvers, fit the model, set the initial topic concentration to 1, and
specify not to fit the topic concentration parameter. Using the data in the FitInfo
property of the fitted LDA models, plot the validation perplexity and the time elapsed. Plot
the time elapsed in a logarithmic scale. This can take up to an hour to run.

The code for removing NaNs is necessary because of a quirk of the stochastic solver
"savb'. For this solver, the function evaluates the validation perplexity after each pass of
the data. The function does not evaluate the validation perplexity for each iteration (mini-
batch) and reports NaNs in the FitInfo property. To plot the validation perplexity,
remove the NaNs from the reported values.

figure

for i = 1l:numel(solvers)
solver = solvers(i);
lineSpec = lineSpecs(i);

mdl = fitlda(bag,numTopics,
'Solver',solver,
'InitialTopicConcentration',1,
'FitTopicConcentration', false,
'ValidationData',validationData,
'Verbose',0);

history = mdl.FitInfo.History;

timeElapsed = history.TimeSinceStart;
validationPerplexity = history.ValidationPerplexity;

% Remove NalNs.

idx = isnan(validationPerplexity);
timeElapsed(idx) = [];
validationPerplexity(idx) = [];

semilogx(timeElapsed,validationPerplexity, lineSpec)

hold on
end
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hold off

xlabel("Time Elapsed (s)")
ylabel("Validation Perplexity")
legend(solvers)
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For the stochastic solver "savb", the function, by default, passes through the training
data once. To process more passes of the data, set 'DataPassLimit’' to a larger value
(the default value is 1). For the batch solvers ("cgs", "avb", and "cvb0"), to reduce the
number of iterations used to fit the models, set the 'IterationLimit' option to a lower
value (the default value is 100).
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A lower validation perplexity suggests a better fit. Usually, the solvers "savb" and "cgs"
converge quickly to a good fit. The solver "cvb0" might converge to a better fit, but it
can take much longer to converge.

For the FitInfo property, the fitlda function estimates the validation perplexity from
the document probabilities at the maximum likelihood estimates of the per-document
topic probabilities. This is usually quicker to compute, but can be less accurate than other
methods. Alternatively, calculate the validation perplexity using the Logp function. This
function calculates more accurate values but can take longer to run. For an example
showing how to compute the perplexity using Logp, see “Calculate Document Log-
Probabilities from Word Count Matrix”.

Preprocessing Function

The function preprocessText performs the following steps:

Tokenize the text using tokenizedDocument.

Lemmatize the words using normalizeWords.

Erase punctuation using erasePunctuation.

Remove a list of stop words (such as "and", "of", and "the") using removeStopWords.
Remove words with 2 or fewer characters using removeShortWords.

O U A W N MR

Remove words with 15 or more characters using removelLongWords.
function documents = preprocessText(textData)

% Tokenize the text.
documents = tokenizedDocument (textData);

% Lemmatize the words.
documents addPart0fSpeechDetails (documents);
documents normalizeWords (documents, 'Style', 'lemma');

% Erase punctuation.
documents = erasePunctuation(documents);

% Remove a list of stop words.
documents = removeStopWords(documents);

Remove words with 2 or fewer characters, and words with 15 or greater
characters.
documents = removeShortWords (documents,2);

)
“©
)

“©
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documents = removelLongWords(documents,15);

end

See Also

addPart0fSpeechDetails | bag0fWords | erasePunctuation | fitlda | ldaModel
| Logp | normalizeWords | removeEmptyDocuments | removeInfrequentWords |
removeLongWords | removeShortWords | removeStopWords | tokenizedDocument |
wordcloud

Related Examples
. “Analyze Text Data Using Topic Models” on page 2-18
. “Choose Number of Topics for LDA Model” on page 2-25
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Analyze Text Data Containing Emojis

This example shows how to analyze text data containing emojis.

Emojis are pictorial symbols that appear inline in text. When writing text on mobile
devices such as smartphones and tablets, people use emojis to keep the text short and
convey emotion and feelings.

You also can use emojis to analyze text data. For example, use them to identify relevant
strings of text or to visualize the sentiment or emotion of the text.

When working with text data, emojis can behave unpredictably. Depending on your
system fonts, your system might not display some emojis correctly. Therefore, if an emoji
is not displayed correctly, then the data is not necessarily missing. Your system might be
unable to display the emoji in the current font.

Composing Emojis

In most cases, you can read emojis from a file (for example, by using extractFileText,
extractHTMLText, or readtable) or by copying and pasting them directly into
MATLAB®. Otherwise, you must compose the emoji using Unicode UTF16 code units.

Some emojis consist of multiple Unicode UTF16 code units. For example, the "smiling
face with sunglasses" emoji (Jvith code point U+1F60E) is a single glyph but comprises
two UTF16 code units "D83D" and "DEOE". Create a string containing this emoji using
the compose function, and specify the two code units with the prefix "\x".

emoji = compose("\xD83D\xDEOE")

emoji =

"0d

First get the Unicode UTF16 code units of an emoji. Use char to get the numeric
representation of the emoji, and then use dec2hex to get the corresponding hex value.

codeUnits

dec2hex(char(emoji))
codeUnits = 2x4 char array

'D83D"
'DEOQE"
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Reconstruct the composition string using the strjoin function with the empty delimiter

formatSpec = strjoin("\x" + codeUnits,"")

formatSpec =
"\xD83D\xDEOE"

emoji = compose(formatSpec)

emoji =

"0
Import Text Data

Extract the text data in the file weekendUpdates.x1sx using readtable. The file
weekendUpdates.x1lsx contains status updates containing the hashtags "#weekend"
and "#vacation".

filename = "weekendUpdates.xlsx";
tbl = readtable(filename, 'TextType', 'string');
head(tbl)

ans=8x2 table
ID TextData

"Happy anniversary! « Next stop: Paris! » #vacation"

"Haha, BBQ on the beach, engage smug mode! [0« [O0#vacation"

"getting ready for Saturday night [0#yum #weekend [[]

"Say it with me - I NEED A #VACATION!!! &"

"00Chilling Odat home for the first time in ages..This is the life! [#weeken
"My last #weekend before the exam [JO0F"

"can't believe my #vacation is over [JJso unfair"

"Can't wait for tennis this #weekend [O0O000M

oOoNOOUTLEA, WN -

Extract the text data from the field TextData and view the first few status updates.

textData = tbl.TextData;
textData(1:5)

ans = 5x1 string array
"Happy anniversary! « Next stop: Paris! » #vacation"
"Haha, BBQ on the beach, engage smug mode! [0« [#vacation"
"getting ready for Saturday night [0#yum #weekend [[]
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"Say it with me - I NEED A #VACATION!!! &"
"00Chilling Odat home for the first time in ages..This is the life! [JJ#weekend"
Visualize the text data in a word cloud.

figure
wordcloud(textData);
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Filter Text Data by Emoji

Identify the status updates containing a particular emoji using the contains function.
Find the indices of the documents containing the "smiling face with sunglasses" emoji ([

2-37



2 Modeling and Prediction

2-38

with code U+1F60E). This emoji comprises the two Unicode UTF16 code units "D83D"
and "DEOE".

emoji = compose("\xD83D\xDEOE");
idx = contains(textData,emoji);
textDataSunglasses = textData(idx);
textDataSunglasses(1:5)

ans = 5x1 string array
"Haha, BBQ on the beach, engage smug mode! [0« [#vacation"
"getting ready for Saturday night [0#yum #weekend [[]
"00Chilling Odat home for the first time in ages..This is the life! [JJ#weekend"
"00Check the out-of-office crew, we are officially ON #VACATION!! M
"Who needs a #vacation when the weather is this good * [

Visualize the extracted text data in a word cloud.

figure
wordcloud(textDataSunglasses);
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Extract and Visualize Emojis

Visualize all the emojis in text data using a word cloud.

Extract the emojis. First tokenize the text using tokenizedDocument, and then view the

first few documents.

documents = tokenizedDocument (textData);
documents(1:5)

ans =
5x1 tokenizedDocument:

11 tokens: Happy anniversary ! « Next stop : Paris ! » #vacation
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16 tokens: Haha , BBQ on the beach , engage smug mode ! 000 O0#vacation

9 tokens: getting ready for Saturday night [JJ#yum #weekend [

13 tokens: Say it with me - I NEED A #VACATION ! ! ! @

19 tokens: [JOChilling [Jat home for the first time in ages .. This is the life ! [

The tokenizedDocument function automatically detects emoji and assigns the token
type "emoji". View the first few token details of the documents using the
tokenDetails function.

tdetails = tokenDetails(documents);

head(tdetails)
ans=8x5 table
Token DocumentNumber LineNumber Type Language

"Happy" 1 1 letters en
"anniversary" 1 1 letters en
e 1 1 punctuation en
"o 1 1 emoji en
“Next" 1 1 letters en
"stop" 1 1 letters en
e 1 1 punctuation en
"Paris"” 1 1 letters en

Visualize the emojis in a word cloud by extracting the tokens with token type "emoji"
and inputting them into the wordcloud function.

idx = tdetails.Type == "emoji";
tokens = tdetails.Token(idx);
figure

wordcloud(tokens);
title("Emojis")
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Emojis

4
@
.

See Also

tokenDetails | tokenizedDocument | wordcloud

Related Examples

. “Analyze Text Data Using Topic Models” on page 2-18

. “Analyze Text Data Using Multiword Phrases” on page 2-9
. “Train a Sentiment Classifier” on page 2-43

. “Classify Text Data Using Deep Learning” on page 2-53
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. “Generate Text Using Deep Learning” (Deep Learning Toolbox)
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Train a Sentiment Classifier

This example shows how to train a classifier for sentiment analysis using an annotated list
of positive and negative sentiment words and a pretrained word embedding.

The pretrained word embedding plays several roles in this workflow. It converts words
into numeric vectors and forms the basis for a classifier. You can then use the classifier to
predict the sentiment of other words using their vector representation, and use these
classifications to calculate the sentiment of a piece of text. There are four steps in
training and using the sentiment classifier:

* Load a pretrained word embedding.
* Load an opinion lexicon listing positive and negative words.

» Train a sentiment classifier using the word vectors of the positive and negative words.
* Calculate the mean sentiment scores of the words in a piece of text.

To reproduce the results in this example, set rng to 'default’.
rng('default"')
Load Pretrained Word Embedding

Word embeddings map words in a vocabulary to numeric vectors. These embeddings can
capture semantic details of the words so that similar words have similar vectors. They
also model relationships between words through vector arithmetic. For example, the
relationship king is to queen as man is to woman is described by the equation king - man
+ woman = queen.

Load a pretrained word embedding using the fastTextWordEmbedding function. This
function requires Text Analytics Toolbox™ Model for fastText English 16 Billion Token
Word Embedding support package. If this support package is not installed, then the
function provides a download link.

emb = fastTextWordEmbedding;

Load Opinion Lexicon

Load the positive and negative words from the opinion lexicon (also known as a sentiment
lexicon) from https://www.cs.uic.edu/~liub/FBS/sentiment-analysis.html. First, extract the
files from the . rar file into a folder named opinion-lexicon-English, and then
import the text.
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Load the data using the function readLexicon listed at the end of this example. The
output data is a table with variables Word containing the words, and Label containing a
categorical sentiment label, Positive or Negative.

data = readLexicon;
View the first few words labeled as positive.

idx = data.Label == "Positive";
head(data(idx,:))

ans=8x2 table

Word Label
"a+" Positive
"abound" Positive
"abounds" Positive
"abundance" Positive
"abundant" Positive
"accessable" Positive
"accessible" Positive
"acclaim" Positive

View the first few words labeled as negative.

idx = data.Label == "Negative";
head(data(idx,:))

ans=8x2 table

Word Label
"2-faced" Negative
"2-faces" Negative
"abnormal" Negative
"abolish" Negative
"abominable" Negative
"abominably" Negative
"abominate" Negative
"abomination" Negative
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Prepare Data for Training

To train the sentiment classifier, convert the words to word vectors using the pretrained
word embedding emb. First remove the words that do not appear in the word embedding
emb.

idx = ~isVocabularyWord(emb,data.Word);
data(idx,:) = [1;

Set aside 10% of the words at random for testing.

numWords = size(data,l);

cvp = cvpartition(numWords, 'HoldOut',0.1);
dataTrain = data(training(cvp),:);
dataTest = data(test(cvp),:);

Convert the words in the training data to word vectors using word2vec.

wordsTrain = dataTrain.Word;
XTrain word2vec(emb,wordsTrain) ;
YTrain dataTrain.Label;

Train Sentiment Classifier

Train a support vector machine (SVM) classifier which classifies word vectors into
positive and negative categories.

mdl = fitcsvm(XTrain,YTrain);

Test Classifier

Convert the words in the test data to word vectors using word2vec.
wordsTest = dataTest.Word;

XTest = word2vec(emb,wordsTest);

YTest = dataTest.Label;

Predict the sentiment labels of the test word vectors.
[YPred,scores] = predict(mdl,XTest);

Visualize the classification accuracy in a confusion matrix.

figure
confusionchart(YTest,YPred);
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True Class

Megative ¥
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Positive 189 15

Positive Megative
Predicted Class

Visualize the classifications in word clouds. Plot the words with positive and negative
sentiments in word clouds with word sizes corresponding to the prediction scores.

figure

subplot(1,2,1)

idx = YPred == "Positive";
wordcloud(wordsTest (idx),scores(idx,1));
title("Predicted Positive Sentiment")

subplot(1,2,2)
wordcloud(wordsTest (~idx),scores(~idx,2));
title("Predicted Negative Sentiment")
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Calculate Sentiment of Collections of Text

To calculate the sentiment of a piece of text, for example a review, predict the sentiment
score of each word in the text and take the mean sentiment score.

Load the Airbnb Summary Review data (Boston, Massachusetts, United States, 06
October, 2017) from http://insideairbnb.com/get-the-data.html. Read the data into a table
and specify to read the text data as string.

filename = "reviews.csv";
dataReviews = readtable(filename, 'TextType', 'string');

Extract the text data from the comments variable and view the first few reviews.
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textData = dataReviews.comments;
textData(1:10)

ans = 10x1 string array

"Pretty nice, quiet, cozy place to stay. Toiletries, snacks, coffee, WiFi, cable T
"The host was extremely welcoming and obliging. The neighborhood is quiet and charr
"Nice and easy stay - with good accommodations especially the cable TV "

"The host has been very accommodating and helpful. The description in the ad is ac
"It's a great quiet stay."

"Couldn't have been happier. The apartment was well renovated, very clean and conve
"The apartment is very nice- as described and very convenient. The real superstar
"This is a brand new gorgeous place, very clean, bright and welcoming. Estee espec:
"Estee and Josh are great hosts. Very welcoming. Made us feel like we were staying
"Estee was super sweet and so very accommodating! The apartment was nicely renovate

Create a function which tokenizes and preprocesses the text data so it can be used for
analysis. The function preprocessText, listed at the end of the example, performs the
following steps in order:

Tokenize the text using tokenizedDocument.

Erase punctuation using erasePunctuation.

Remove stop words (such as "and", "of", and "the") using removeStopWords.

A W N R

Convert to lowercase using lower.

Use the preprocessing function preprocessText to prepare the text data. This step can
take a few minutes to run.

documents = preprocessText(textData);

Remove the words from the documents that do not appear in the word embedding emb.

idx = ~isVocabularyWord(emb,documents.Vocabulary);
documents = removeWords(documents,idx);

To visualize how well the sentiment classifier generalizes to the reviews, classify the
sentiments on the words that occur in the reviews, but not in the training data and
visualize them in word clouds. Use the word clouds to manually check that the classifier
behaves as expected.

words = documents.Vocabulary;
words (ismember(words,wordsTrain)) = [];
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vec = word2vec(emb,words);
[YPred,scores] = predict(mdl,vec);

figure
subplot(1,2,1)
idx = YPred == "Positive";

wordcloud(words(idx),scores(idx,1));

title("Predicted Positive Sentiment")

subplot(1,2,2)

wordcloud(words(~idx),scores(~idx,2));
title("Predicted Negative Sentiment")

Predicted Positive Sentiment

compassia n:ﬂa
guEsioms .

. enriched

[l o m iy B

Iulpfulnasﬂ_-, thankad Wekaming

friendliest
t-:':la-:- - Llnfarhng mspwatlﬂ-l‘lal

ks
cangrals enhancmgmmd,

fulfled guice 5

Unﬁurpasse d\'— I| Lr-r_b
informative _...Customized

approachable

gy
FEEEyTy ITIEH:I bt e P b s

affordable

Srawiking

~“personable

ey boacons k=0 urr el red

guided enrichingaloha

appreciation warmest e

o=t worldclass =

CD"'I'I"I'IJ'CE‘ID" § wmne  DCHADD ai

=~attainable wondeful

paﬁﬁrgrmg achieved

awr emfightened

wonde rf uII criahining

pacr it wnprantious
unzelfishiy "™
axpadilious

Predicted Negative Sentiment

=nack s
exacerbated
stomachache unorganized
Lresrhanss digorganization

Freatarsd encrasching

sprained SCrAOQlY
svesNUNChed mn‘._ff“j'f_

e vetend
Ny Sﬂﬂl’|5 ™ limping
dlsmnnoﬂtlons RS severely
gouged |d}’ rotiad

bty miscounted ol

I chorid

“discolored
unsanltary

o] il

- usting ghadg, ey

mildewed =

grurr'blnd blamred IJI'I1.I.‘.|II'IH'_-b
r:1|scr:nlt:-ratu::ur'lM’"C ¥

AdusSIUS w e shvonl; CreSdEng
ek b uncleanlmess péaming
uncooperative "
underequipped
TERESE nanfunctioning

aggravaad

g ureed

2-49



2 Modeling and Prediction

To calculate the sentiment of a given piece of text, compute the sentiment score for each
word in the text and calculate the mean sentiment score.

For a selection of the documents, calculate the mean sentiment score. For each
document, convert the words to word vectors, predict the sentiment score on the word
vectors, transform the scores using the score-to-posterior transform function and then
calculate the mean sentiment score.

idx = [7 34 331 1788 1820 1831 2185 21892 63734 76832 113276 120210];
for i = 1:numel(idx)

words = string(documents(idx(i)));

vec = word2vec(emb,words);

[~,scores] = predict(mdl,vec);

sentimentScore(i) = mean(scores(:,1));
end

View the predicted sentiment scores with the text data. Scores greater than 0 correspond
to positive sentiment, scores less than 0 correspond to negative sentiment, and scores
close to 0 correspond to neutral sentiment.

[sentimentScore' textData(idx)]

ans = 12x2 string array

"0.85721" "The apartment is very nice- as described and very convenient. The
"2.0453" "Estee was the perfect Airbnb host. The apartment was comfortable,
"-0.37918" "The apartment is not apropriate for 5 people. Is too little and We
"0.94799" "Truly a quaint place in Beacon Hill. Comfortable walking distance
"-0.077053" “the neibourhood is perfect!!!!!, as it is very close to Bowdoin T ¢
"0.17846" "Although we didn't meet JJ, we felt he was very quick to respond.
"-0.31603" "In the apartment it was very dirty .«we walked in and there instin
"-4.0895" "Blackmail!"

“1.658" "Outstanding stay. The apartment is world-class - very, very nice.
"1.7102" "I had an amazing stay at Carney's. The hosts are friendly and very
"0.67654" "My husband and I came to Boston for our 1 year anniversary. We're
"-0.21651" "My fiancA© and I had just gotten engaged and wanted to stay somewh

Sentiment Lexicon Reading Function

This function reads the positive and negative words from the sentiment lexicon and
returns a table. The table contains variables Word and Label, where Label contains
categorical values Positive and Negative corresponding to the sentiment of each
word.
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function data = readlLexicon

% Read positive words

fidPositive = fopen(fullfile('opinion-lexicon-English', 'positive-words.txt"'));
C = textscan(fidPositive, '%s', 'CommentStyle’,"';"');

wordsPositive = string(C{1});

% Read negative words

fidNegative = fopen(fullfile('opinion-lexicon-English', 'negative-words.txt"'));
C = textscan(fidNegative, '%s', 'CommentStyle',"';");

wordsNegative = string(C{1});

fclose all;

% Create table of labeled words

words = [wordsPositive;wordsNegative];

labels = categorical(nan(numel(words),1));

labels(1l:numel (wordsPositive)) = "Positive";
labels(numel(wordsPositive)+l:end) = "Negative";

data = table(words, labels, 'VariableNames', {'Word', 'Label'});
end

Preprocessing Function

The function preprocessText performs the following steps:

Tokenize the text using tokenizedDocument.
Erase punctuation using erasePunctuation.
Remove stop words (such as "and", "of", and "the") using removeStopWords.

A W N =

Convert to lowercase using lower.
function documents = preprocessText(textData)

% Tokenize the text.
documents = tokenizedDocument (textData);

% Erase punctuation.
documents = erasePunctuation(documents);

% Remove a list of stop words.
documents = removeStopWords(documents);
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% Convert to lowercase.
documents = lower(documents);

end

See Also

bagO0fWords | erasePunctuation | fastTextWordEmbedding | removeStopWords |
removeWords | tokenizedDocument | word2vec | wordcloud

Related Examples

. “Create Simple Text Model for Classification” on page 2-2

. “Analyze Text Data Containing Emojis” on page 2-35

. “Analyze Text Data Using Topic Models” on page 2-18

. “Analyze Text Data Using Multiword Phrases” on page 2-9

. “Classify Text Data Using Deep Learning” on page 2-53

. “Generate Text Using Deep Learning” (Deep Learning Toolbox)
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Classify Text Data Using Deep Learning

This example shows how to classify text descriptions of weather reports using a deep
learning long short-term memory (LSTM) network.

Text data is naturally sequential. A piece of text is a sequence of words, which might have
dependencies between them. To learn and use long-term dependencies to classify
sequence data, use an LSTM neural network. An LSTM network is a type of recurrent
neural network (RNN) that can learn long-term dependencies between time steps of
sequence data.

To input text to an LSTM network, first convert the text data into numeric sequences. You
can achieve this using a word encoding which maps documents to sequences of numeric
indices. For better results, also include a word embedding layer in the network. Word
embeddings map words in a vocabulary to numeric vectors rather than scalar indices.
These embeddings capture semantic details of the words, so that words with similar
meanings have similar vectors. They also model relationships between words through
vector arithmetic. For example, the relationship "king is to queen as man is to woman" is
described by the equation king - man + woman = queen.

There are four steps in training and using the LSTM network in this example:

* Import and preprocess the data.

* Convert the words to numeric sequences using a word encoding.
* Create and train an LSTM network with a word embedding layer.
* Classify new text data using the trained LSTM network.

Import Data

Import the weather reports data. This data contains labeled textual descriptions of
weather events. To import the text data as strings, specify the text type to be 'string"'.

filename = "weatherReports.csv";
data = readtable(filename, 'TextType', 'string');
head(data)
ans=8x16 table
Time event id state event type
22-Jul-2016 16:10:00 6.4433e+05 "MISSISSIPPI" "Thunderstorm Wind"
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15-Jul-2016
15-Jul-2016
16-Jul-2016
15-Jul-2016
15-Jul-2016
15-Jul-2016
15-Jul-2016

Remove the rows of the table with empty reports.

idxEmpty = strlength(data.event narrative)
data(idxEmpty,:) = [1;

17:
17:

12

14:
16:
16:
17:

15:
25:
146:
28:
31:
03:
27:

[e)le) o) le)e) o) Ne)]

.5182e+05
.5183e+05
.5183e+05
.4332e+05
.4332e+05
.4343e+05
.4344e+05

“SOUTH CAROLINA"
“SOUTH CAROLINA"
“NORTH CAROLINA"
"MISSOURI"
“ARKANSAS "
“TENNESSEE"
“TENNESSEE"

== 0;

"Heavy Rain"
"Thunderstorm Wind"
"Thunderstorm Wind"
"Hail"
"Thunderstorm Wind"
"Thunderstorm Wind"
"Hail"

The goal of this example is to classify events by the label in the event type column. To
divide the data into classes, convert these labels to categorical.

data.event type

categorical(data.event type);

View the distribution of the classes in the data using a histogram. To make the labels

easier to read, increase the width of the figure.

f = figure;

f.Position(3) = 1.5*f.Position(3);

h = histogram(data.event type);

xlabel("Class")

ylabel("Frequency")
title("Class Distribution")
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The classes of the data are imbalanced, with many classes containing few observations.
When the classes are imbalanced in this way, the network might converge to a less
accurate model. To prevent this problem, remove any classes which appear fewer than
ten times.

Get the frequency counts of the classes and the class names from the histogram.

classCounts = h.BinCounts;
classNames = h.Categories;

Find the classes containing fewer than ten observations.

idxLowCounts = classCounts < 10;
infrequentClasses = classNames (idxLowCounts)

infrequentClasses = 1Ix8 cell array
{'Freezing Fog'} {'Hurricane'} {'Lakeshore Flood'} {'Marine Dense Fog'}

Remove these infrequent classes from the data. Use removecats to remove the unused
categories from the categorical data.
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idxInfrequent = ismember(data.event type,infrequentClasses);
data(idxInfrequent,:) = [];
data.event type = removecats(data.event type);

Now the data is sorted into classes of reasonable size. The next step is to partition it into
sets for training, validation, and testing. Partition the data into a training partition and a
held-out partition for validation and testing. Specify the holdout percentage to be 30%.

cvp = cvpartition(data.event type, 'Holdout',0.3);
dataTrain = data(training(cvp),:);
dataHeldOut = data(test(cvp),:);

Partition the held-out set again to get a validation set. Specify the holdout percentage to
be 50%. This results in a partitioning of 70% training observations, 15% validation
observations, and 15% test observations.

cvp = cvpartition(dataHeldOut.event type, 'HoldOut',0.5);
dataValidation = dataHeldOut(training(cvp),:);
dataTest = dataHeldOut(test(cvp),:);

Extract the text data and labels from the partitioned tables.

textDataTrain = dataTrain.event narrative;
textDataValidation = dataValidation.event narrative;
textDataTest = dataTest.event narrative;

YTrain = dataTrain.event type;

YValidation = dataValidation.event type;

YTest = dataTest.event type;

To check that you have imported the data correctly, visualize the training text data using a
word cloud.

figure

wordcloud(textDataTrain);
title("Training Data")
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Preprocess Text Data

Create a function that tokenizes and preprocesses the text data. The function
preprocessText, listed at the end of the example, performs these steps:

1 Tokenize the text using tokenizedDocument.
2 Convert the text to lowercase using lower.
3 FErase the punctuation using erasePunctuation.

Preprocess the training data and the validation data using the preprocessText
function.

documentsTrain = preprocessText(textDataTrain);
documentsValidation = preprocessText(textDataValidation)
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documentsValidation =
4218x1 tokenizedDocument:

NN ovoNoOoN L

21
77
36
31
16
15
33
10

14
13
23
118
13
13

16
13
13

127
14
19
27
19
10
13
10

12
13

tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:

quarter size hail near rosemark

large tree down on powerlines in caruthersville

three trees down on hwy 224

heat indices of 110 degrees or higher

numerous trees were reported down in the greenback area

several large tree branches were blown down in osage

a tree fell onto a car four miles west southwest of knoxville

two trees were reported in tellico plains

wind gusts of 40 to 45 mph were common across buffalo county during the
strong southerly gradient winds affected the nashville metro during the
wind gusts of 40 to 50 mph were common across crawford county during tl
snowfall amounts between 19 and 32 inches were reported across prince \
wind driven hail resulted in numerous holes in siding on the south sid
snowfall amounts were estimated to be between 24 and 36 inches based ol
snowfall amounts were reported to be between 18 and 30 inches across s
three to eight inches of snow fell across suffolk county

approximately nine inches of snow fell in bristol county

between 2 and 5 inches of snow were reported over the 12 hour period
trained spotters reported between 02 and 04 inches of ice around the c
the white river at newport remained above flood stage from december ant
strong high pressure developed across south central arizona including -
the blackhall mountain snotel site elevation 9820 ft estimated six inc
the battle mountain snotel site elevation 7440 ft estimated 17 inches ¢
trees were blown down on persimmon road

two to five inches of rain fell across central and eastern portions of
one to two feet of water covered highway 2692 from mitchell to scottsb
the intersection of highway 97 and highway vv was closed due to floodi
quarter size hail was reported at federal

the national weather service baltimore washington weather forecast off
the east santa barbara channel buoy reported a thunderstorm wind gust «
there was a report via social media of 73 inches of lake enhanced snow
lake enhanced snow totals over an 18hour period included six inches ne:
twoday storm total lake effect snow accumulation included 14 inches at
trees were blown down around highway 37 near fort gaines

the webber springs snotel site elevation 9250 ft estimated 15 inches o
just over two inches of rain fell in 24 hours

quarter size hail was reported at fort laramie

between 2 and 4 inches of snow was reported around the county
estimated wind gusts of 60 mph were reported 17 miles westnorthwest of
nickel to quarter size hail was reported at potter

just over two inches of rain fell with thunderstorms
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73
10
10
11
20
14

10
21
28
40
24

49

10
10

12
13
36

41
11

31
14
13
15
14

53

13

13
14

58
10

tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:

the poteau river near poteau rose above its flood stage of 24 feet at !
fdk reported reduced visibilities of one quarter mile or less

hwy reported reduced visibilities of one quarter mile or less

heavy rain fell from thunderstorms on the morning hours of 731

total rainfall from thunderstorms was six and three quarter inches witl
between 1 and 3 inches of snow were reported over the 12 hour period
between 1 and 4 inches of snow was reported

just under three inches of heavy rain fell from thunderstorms

a large tree was taken down by thunderstorm wind gusts and knocked off
heavy rainfall over the solimar burn scar resulted in a significant mu
northerly winds gusting to near 50 mph combined with existing snow cov
a light glaze of freezing rain caused hazardous travel conditions over
a tree was blown down just south of bonifay

temperatures reaching daytime highs of 95 to 100 after a period of coo’
trees were blown down on beechwood drive

nyg reported reduced visibilities of one quarter mile or less

mrb reported reduced visibilities of one quarter mile or less

between 1 and 4 inches of snow was reported

ping pong ball size hail was reported two miles south of cheyenne
heavy rain fell from thunderstorms

trained spotters reported between 02 and 04 inches of ice around the c
a tree was blown down at avery and spring street in st augustine the t:
snow amounts reported by spotters were 10 inches at victor and 9 inche:
harell road was closed at forbes street due to high water

golf ball size hail was reported southwest of wheatland

between 5 and 8 inches of snow was reported

almost three inches of heavy rain fell with thunderstorms

a lightning strike hit the pulaski county 911 center several of the cor
the east santa barbara channel buoy reported a thunderstorm wind gust
a 24 hour storm total rainfall of 550 inches was reported near northvic
a tree was blown down onto a residence in the cottondale area damage w:
trees were blown down in the youngstown area

the roof was partially blown off of lighthouse church near sylvester d:
a tree was blown down on spring creek road

temperatures reaching daytime highs of 95 to 100 after a period of coo’
heavy rain fell from thunderstorms

heavy rain fell from thunderstorms

the blackhall mountain snotel site elevation 9820 ft estimated 15 inche
there was a water rescue reported on cherokee avenue

trained spotters reported between 02 and 04 inches of ice around the c
the wind sensor at the torrington airport measured a peak gust of 63 mj
between 5 and 8 inches of snow was reported

snow began during the evening hours on the 22nd then continued heavy a
quarter size hail was reported seven miles west of carpenter
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39
17

17
12
13

11
17
20

18
11

23
40
12
12
24
27
13
17
44
42
28
11

11
46
14
19
14
16
13
13
40
29
15
18
49
26

tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:

snowfall of 1 to 4 inches combined with southeast winds gusting around
quarter size hail was reported 4 miles southeast of kentwood the repor
golfball size hail was reported in downtown franklinton

a porch roof was blown off a home at louisiana highway 447 and courtne!
just under four inches of rain fell in 24 hours from thunderstorms

the webber springs snotel site elevation 9250 ft estimated 17 inches o
trees were blown down on thames street

between 1 and 6 inches of snow was reported

four and a half inches of heavy rain fell from thunderstorms

one quarter to one half of an inch of freezing rain accrual was report
a tree was blown down on highway 189 about 5 miles outside of elba pows
a tree was blown down on highway 162

trees were blown down on harvey mill road

a tree was blown down onto a house near the 3200 block of crawfordville
highway j was flooded and there was a high water rescue

between one and two inches of snow was reported

between one and two inches of snow was reported

meteorologist from the 26th operational weather squadron at barksdale :
westerly winds behind a cold front reach sustained speed of 40 to 45 m
a wind gust of 60 mph was measured at wunderground site kflpanam37
snowfall amounts of up to 2 inches were observed across the county
heavy rain and snowmelt combined to cause minor flooding on the kenneb
a tenth of an inch of freezing rain was reported in dillon a large tree
the wydot sensor at bordeaux measured a peak wind gust of 61 mph

a spotter reported visibility of 300 yards at el toro rd and aliso cre
lake effect snow showers accumulated to between 2 and 6 inches during -
lake effect snow showers accumulated to between 2 and 5 inches during -
a couple tenths of an inch of freezing rain accrual was reported acros:
a 59 mph wind gust was measured at the cleveland awos

a tree was blown down on morris road

a tree fell on a home around 2273 highway 15 south

lake effect snow showers accumulated to between 2 and 4 inches during -
a 24 hour storm total rainfall of 381 inches was reported near ash gro
quarter size hail fell at the intersection of north street and highway
flash flooding washed out portions of county road 19 north of carter c:
a tree was blown down onto county road 5 near the intersection with co
several trees uprooted along highway 231 between the cities of clevelal
several trees uprooted and power pole downed causing structural damage
northerly winds gusting to near 50 mph combined with existing snow cov
westerly winds behind a cold front reach sustained speed of 40 to 45 m
law enforcement reported a funnel cloud near the intersection of us 98
flooding reported in plaza del caribe flood waters reached the doors o
temperatures reaching daytime highs of 95 to 100 after a period of coo’
woodland high school lunchroom roof lifted off along with numerous tre
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49
49
20
49
49
23
13

19
10

15
49
11
25
13

10
23
17
12
10
36

13

21
24
16
22
13
10

19
17

10
17
17
17
15
16

tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:

temperatures reaching daytime highs of 95 to 100 after a period of coo’
temperatures reaching daytime highs of 95 to 100 after a period of coo’
thunderstorm winds caused tree damage including several branches blown
reports of slideoffs and accidents along with school delays were commol
reports of slideoffs and accidents along with school delays were commol
six utility poles bent on 4000n between 6000e and 8000e and a half doz
a tree was blown down along shell point road and spring creek highway
heavy rain fell from thunderstorms

trees were taken down at the intersection of 202 and route 10 in morri
there were 2 reports of trees down in quitman county

trees were blown down on highway 216

trees were blown down along val del road

a public report indicated pea to penny sized hail near majors field in
reports of slideoffs and accidents along with school delays were commol
golf ball size hail was reported six miles west of hemingford

heavy rain and snow melt combined to cause minor flooding on the presur
trees and wires down on western ave in morristown due to thunderstorm \
heavy rain fell from thunderstorms

trees and power lines were blown down on highway 52

downed tree blocking the road along the 500 block of ridgewood road rat
a tree was blown down on county road 58 near the border of franklin an
a tree was blown down at courtney grade road near puckett road

a tree was taken down due to thunderstorm wind gusts

near lake darby 34 inches of snow was measured a social media post fror
reported by ew8188 in frederick

the squaw peak raws recorded a gust to 77 mph at 130239 pst

hail from a thunderstorm was estimated at 75 inches

liberty county dispatch reported power lines down at the intersection ¢
liberty county dispatch reported a tree and a power line down at the il
the juniper creek raws recorded wind chill temperatures ranging from 1¢
the flynn prairie raws recorded several gusts exceeding 57 mph during -
dutch harbor asos experienced a peak gust to 82 knots during this time
several large trees were taken down due to thunderstorm winds
thunderstorm winds took down numerous trees

three inchesof snow was measured 5 miles south of heath a spotter meas
northeast of troy a spotter measured 28 inches of snow southwest of to
reported by dw3148 falling waters

w99 reported reduced visibilities of one quarter mile or less

the umpqua offshore buoy indicated heavy swell that likely generated h:
the port orford buoy indicated heavy swell that likely generated high
the port orford buoy indicated heavy swell that likely generated high
offshore buoys indicated heavy swell that likely generated high surf a
a power line was blown down at highway 71 and industrial road monetary
weatherflow measured thunderstorm wind gust of 64 mph
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16
30
12
15
25
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11
14
23
15

11
16
35
14
14
18
10
13
47
11
21

32
12
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18

12
12
10
10

18

tokens:
tokens:
tokens:
tokens:
tokens:
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tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:

an nws employee measured hail to the size of 125 inches during a thunde
in plymouth warren avenue was closed at the entrance to plymouth beach
a coop observer reported 4 inches of snow new snow in waterville wa the
several pictures of golf ball size hail was posted to social media

a measured wind gust of 56 knots occurred with a thunderstorm at a wea
em reported 56 inches of snow in marysville early thursday morning the
isolated thunderstorms developed and moved north across the greater ph
near circleville an inch of snow was measured

trees were blown down east of somerset

three inches of snow was measured near wapakoneta

a coop observer reported 143 inches of new snow from this passing storr
two and a half inches of snow was measured near greenville

a report from east of pickerington showed that 2 inches of snow had fa
heavy snotel amounts were 9 inches at dollarhide 11 inches at galena s
snowfall amounts were estimated to be between 20 and 30 inches based ol
just over two inches of rain fell from thunderstorms

there were numerous reports of downed trees in the haysi vicinity
broadcast media reported a tree blown down on a home 2 miles north of 1
two weather stations along the south washington coast reported a few h
a member of the public reported 6 inches of snow in east wenatchee wa
snowfall totaled up to 243 inches near keyser and 235 inches near shor
thunderstorm winds caused tree damage including several branches blown
northwest of chillicothe a half inch of snow was measured

spotters in trenton and southeast of oxford both measured 2 inches of
numerous trees were downed from a storm that would go on to produce a -
snow accumulated 2 to 5 inches including 40 inches near pipestone

snow amounts up to 15 inches were measured across warren county cocoral
trees and wires taken down due to thunderstorm winds

areas of both low visibilities from fog and icy surfaces from freezing
a coop observer reported 71 inches of snow in holden village wa
measurements and estimates of 4 to 8 inches of snow were received acro:
areas of both low visibilities from fog and icy surfaces from freezing
areas of both low visibilities from fog and icy surfaces from freezing
several trees and power wires taken down due to thunderstorm wind gust:
snow accumulated 2 to 5 inches over the southeastern part of yankton c
law enforcement reported several trees down

power lines were blown down on the 4100 block of jordan ave

local media reported trees and power lines were down in oakland townsh
five people died in las vegas of heat related causes

a woman died of heat related causes in death valley

eight homes were flooded in dolan springs

over 9 inches of snow was reported in alamo the heavy wet snow resultet
emergency management reported trees down

a trained spotter reported trees and wires down
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tokens:
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tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:

the public reported trees down

a tree was down on south shore road near old forge in the town of webb
the sacramento wash flooded the oatman topock highway

a wind gust to 65 mph was reported at joplin 3sw

frequent wind gusts of 40 to 50 mph resulted in numerous trees down ac
the stuart airport awos ksua recorded peak wind gusts of 35 knots as a
one to three inches of snowfall with some light ice accretion
emergency management reported numerous trees down

highway 95 was impassable from vidal junction to mile marker 24 due to
usaf wind tower 0300 recorded a peak gust of 41 knots from the southwe:
the awos at the new smryna beach airport kevb reported winds up to 38
the vero beach airport asos kvrb measured a gust to 34 knots from the
eight inches of snow was reported in barryton 73 inches was reported ii
fourteen inches of snow fell in riverdale ten inches fell in alma

the interstate 80 at grassey sensor reported a peak wind gust of 58 mp
quarter size hail was reported near p highway near rocky point

an estimated 35 inches of rain fell causing water to flow over roadway:
thunderstorm winds snapped a one to two foot diameter tree at chaparra’
mud and debris were on interstate 15 at exit 64

a wind gust to 74 mph was reported at gallatin gateway 16se

torrential rainfall of 12 to 15 inches caused widespread flash flooding
measured wind gusts of 40 to 45 mph knocked down isolated tree limbs tl
a tree was reported down on black hollow road in arlington due to thun
a trained weather spotter observed pennysized hail falling near state
a foot of snow was reported in comstock park there were numerous repor
local emergency management relayed a report of a tree down southwest o
carpet barn road was closed due to flooding

highway e near barker creek was closed due to flooding

flash flooding covered kelso cima road

approximately 10 vehicles were stuck in flood waters at david drive an
a light pole was blown down on the neil street onramp to westbound i74
lightning set fire to a house

street flooding was reported at orange street and market street near h
a trained spotter measured a wind gust of 70 mph

several large tree limbs were blown down in gainesville

an nws employee reported heavy freezing rain causing very icy conditiol
frequent wind gusts of 30 to 40 mph resulted in multiple reports of tr
a wind gust to 67 mph was reported at bynum 13w the dellwo mcscn site
a short tornado track was determined along cr53 just north of its inte
numerous trees were blown down in the area along with numerous power ol
a severe thunderstorm producing winds estimated near 60 mph knocked do
wires were reported down on route 41 in sheffield due to thunderstorm \
golf ball size hail fell 1 mile south of alanreed

trees were blown down and roofs and siding were damaged in the laughlil
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tokens:
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tokens:
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tokens:
tokens:
tokens:
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tokens:

winds caused isolated damage removing the roof from a trailer home a w
this was the second tornado to develop in northwest houston county spa
bar pilot dispatcher reported a brief waterspout in the columbia river
public reported thor road flooding near track road just south of peliol
penny size hail was reported via mping

usaf wind tower 1007 recorded a peak wind gust over 35 knots near play:
the asos at vero beach airport kvrb recorded peak winds of 38 knots as
estimated wind gust of 60 mph reported north of hazel green

the wind gust was measured by a davis weather system

a few dime to quarter sized hailstones fell along with brief heavy rai
a large tree was downed in dartmouth blocking reed road

a tree was snapped off at its base and the fordville scale house was b’
the grand canyon airport asos measured a peak wind gust of 59 mph at 2
trees were toppled and power lines brought down by wind gusts estimatet
weather observers across cumberland county reported snowfall amounts o
local media relayed a report of roof damage to a home

heavy rainfall over southern sections of alexandria produced flooded r
strong north winds behind a cold front pushed the tide levels to or be
two to three inches of snow and gusty southeast winds up to 25 mph cre:
weather observers across edgar county reported snowfall amounts of 4 t
a picutre of quarter size hail was received through social media
multiple power poles were knocked down along patton road relayed via s
power lines were knocked down on huntsville road

a large tree was knocked down and blocking the road on mt olive drive :
a tree was knocked down along al 277 in stevenson time estimated by rat
funnel cloud reported did not touch down

strong winds hit the grand forks air force base

a tree was knocked down onto a home

a 30 by 40 foot section of metal roofing was blown onto the intersecti
two to three inches of snow and gusty southeast winds up to 25 mph cre:
two to three inches of snow and gusty southeast winds up to 25 mph cre:
trees were knocked down on paint hollow road

trees were knocked down on bellview road

trees were knocked down on blanche road

large trees were downed by severe storm winds in the spring area

there was street flooding in the town of coldspring there was also wate
trees were blown down across county road 65

a social media post from haydenville showed that 7 inches of snow fell
winds damaged a lightweight tin roof fences and utility poles

polk county fire rescue reported that multiple 911 calls were received
several trees uprooted in the town of vincent

a spotter west of hebron reported 4 inches of snow in that area anothe
several trees uprooted in and near the cedar bluff community

six large trees were knocked down along cr 23 between red bay and vina
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the cocorahs observer southwest of bethel measured 5 inches of snow a
the airport at kcvg measured a 47 mph gust as did a cwop station in bul
a peak wind of 52 kt 60 mph was reported

the wind sensor at the rawlins airport measured sustained winds of 40 1
several trees uprooted along highway 43 between tierece road and old f:
the observer near new carlisle measured 2 inches of snow another obsen
several trees uprooted and power lines downed in the coates bend commu
a public report southeast of washington court house showed that 6 inche
the cooperative observer near alpine measured 38 inches of snow

a nws employee near ogden measured 3 inches of snow another employee n¢
the odot county garage west of springfield measured an inch of snow
numerous trees uprooted and power lines downed in the city of wetumpka
the nedor sensor at dalton on highway 385 measured sustained winds of ¢
the nedor sensor at interstate 80 mile post 50 measured sustained wind:
trace amounts of ice were reported around the county

this wind gust was measured at a lavaca bay mesonet site

no damage reported

the public estimated 075 inch hail in wind point and relayed their rep¢
a home weather station near new port richey measured a wind gust to 48
rainfall totals generally ranged from 5 to 9 inches across the county
snow melt and around an inch of rainfall produced an ice jam on the kel
blizzard conditions were estimated based on observations nearby snowfa’
the patrick air force base awos kcof recorded a peak gust of 34 knots -
flash flooding was reported at stevens and hazelwood in borger barricad
a home weather station located on indian shores beach measured a wind
a home weather station near belleair measured a wind gust of 38 knots ¢
torrential rainfall of 8 to 12 inches caused widespread flash flooding
visibility was estimated to be around onequarter mile based on observa
a usgs rain gauge near lakewood ranch measured 752 inches of rain in a
rainfall totals generally ranged from 3 to 6 inches across the county
heavy rainfall of 7 to 10 inches caused widespread flash flooding acro:
torrential rainfall of 10 to 14 inches caused widespread flash floodin
heavy rainfall of 9 to 12 inches caused widespread flash flooding acro:
torrential rainfall of 9 to 12 inches caused widespread flash flooding
the tidal gauge at annapolis indicated moderate flooding water levels -
heavy rainfall of 5 to 6 inches caused widespread flash flooding acros:
torrential rainfall of 9 to 12 inches caused widespread flash flooding
rainfall totals generally ranged from 5 to 11 inches across the county
rainfall totals generally ranged from 7 to 10 inches across the county
heavy rainfall caused street flooding in rhinelander mainly west of the
rainfall totals generally ranged from 3 to 6 inches across the county i
rainfall totals generally ranged from 1 inch to 3 inches across the cot
rainfall totals generally ranged from 2 to 4 inches across the county
the mount pleasant police department reported longpoint road near need
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trace amounts of ice were reported around the county

severe storm winds caused tree damage in the town of deanville

there were numerous reports of trees and power lines down throughout d:
wind chills of 35 to 40 below zero were common across olmsted county ol
there were a few trees down in the county including in grundy

flash flooding was reported along john b carter road southeast of faye
blizzard conditions were reported at reagan national airport snowfall
thunderstorm winds damaged a fence

just over two inches of rain fell due to thunderstorms

several roads closed due to flash flooding with some debris washed int
a trained spotter estimated 60 mile per hour winds in bridgeport

a public report of quarter size hail in crossroads was relayed by broa
snowfall totaled up to 225 inches near dayton

thunderstorm winds caused tree damage including a large tree blown acr
a brief waterspout over northern sarasota bay was reported by the publ
thunderstorm winds blew the roof off a mobile home and also blew down
a wind gust of 58 mph was recorded at the judith gap dot site

windows were knocked out at the tom steed reservoir bait shop

a gust of 61 mph was recorded across the area

a wind gust of 59 mph was recorded at the baker airport

thunderstorm winds destroyed two grain bins and damaged a light pole

a nws survery crew found 25 homes that sustained damage mainly to pool
branches were reported down in the northern end of pocahontas county
the butler awos reported a wind chill of 12

two to six inches of snow fell across the region the larger totals wer
less than an inch to two inches of snow fell across the region the lar¢
the asos at columbia metro airport reported a wind gust of 51 mph
almost three inches of heavy rainfall fell with thunderstorms

several trees downed due to thunderstorm winds

between 18 and 30 inches of snow fell fell near the sierra crest and il
nickel to quarter sized hail fell and nearly covered the ground over t
two and a half inches of rain fell due to thunderstorms

over two inches fell due to thunderstorms

several trees taken down due to thunderstorm winds

hail with a thunderstorm was measured at 75 inches

hail was measured at 34 inch from a thunderstorm

snowfall amounts of 6 to 7 inches were measured above the 5000 foot le
snowfall amounts of 6 to 10 inches were measured across the area wind ¢
snowfall amounts of 1 to 3 inches were measured across the area wind g
county comms reported multiple trees and power lines blown down near h:
heavy rain resulted in flash flooding at a couple of locations in ashel
two trees were blown down at a residence approximately 4 miles northno!
one tree was reported down on morganton road

four to six inches of snow fell across the region the larger totals we
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the wydot sensor at dana ridge measured sustained winds of 40 mph or h:
several trees downed due to thunderstorm winds

trees and wires downed on centerville road due to thunderstorm winds
snowfall amounts between 25 and 38 inches were received across frederi
quarter to ping pong ball sized hail fell

flooding was reported on mirror lake drive

lightning struck a tree which fell on a house damaging several rooms
two to six inches of snow fell across the region the larger totals wer
several trees taken down due to thunderstorm winds in bridgeton
numerous trees taken down due to thunderstorm winds in fairton

several trees down on straughn mill road near interstate 295

almost three inches of rain was measured with thunderstorms

trees taken down by thunderstorm wind gusts

a house was struck by lightning

a 63 mph wind gust was measured from a thunderstorm

a funnel cloud was observed at 9148 centreville road

public reported heavy rainfall of 211 inches so far beginning time rad:
power pole and wires taken down due to thunderstorm winds trees also d
hail was estimated at 1 inch in diameter

the department of highways relayed a report of flash flooding at highw:s
trees and wires downed on bunker hill road

a 53 mph thunderstorm wind gust was measured by a weatherflow site
severe thunderstorm wind gusts around 60 mph downed trees along south 1
severe thunderstorm wind gusts downed trees along oakley road

numerous wires were reported down at route 27 at davils mill rd

fd reported a tree blown down on a home causing significant damage on
one shallow rooted oak tree was blown over wind speeds were estimated -
snow accumulated 3 to 6 inches including 60 inches near pukwana the sn
a bow echo producing winds estimated at 80 mph produced a corridor of \
a tree fell and damaged utility equipment off of mcdaniel road

social media reports of at least a couple of dozen trees blown down ac
county comms and highway patrol reported multiple trees blown down acr
westerly winds behind a cold front reach sustained speed of 40 to 45 m
a few trees were blown down in the cranfield liberty road area south o
public reported quarter size hail on sam dee rd

the stream gauge on potomac river at point of rocks reached flood stage
old charles town road was closed near the opequon creek

spiky hail around ping pong ball size was reported near the intersecti
light snow began around noon on january 17th then continued through the
several roads flooded in the area

dallas center fire department reported hail just under ping pong ball :
westerly winds behind a cold front reach sustained speed of 40 to 45 m
trees and power lines were blown down in ocilla in addition a house fi
trees damaged an suv and a mobile home damage was estimated
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spotter reported brief 34 inch hail off old river rd

spotters reported around half of an inch across the county

while lingering light snow after a blizzard produced little additional
a large cedar tree about two feet in diameter was reported down
multiple large trees uprooted and blown onto power lines resulting in -
a large tree was reported down across calhoun st in west baltimore
county comms and public via social media reported multiple trees blown
the wydot sensor at strouss hill measured peak wind gusts of 58 mph
the wydot sensor at interstate 80 mile post 249 measured sustained win

View the first few preprocessed training documents.

documentsTrain(1:5)

ans =

5x1 tokenizedDocument:

7 tokens:
37 tokens:
13 tokens:
13 tokens:
14 tokens:

large tree down between plantersville and nettleton

one to two feet of deep standing water developed on a street on the win
nws columbia relayed a report of trees blown down along tom hall st
media reported two trees blown down along i40 in the old fort area

a few tree limbs greater than 6 inches down on hwy 18 in roseland

Convert Document to Sequences

To input the documents into an LSTM network, use a word encoding to convert the
documents into sequences of numeric indices.

To create a word encoding, use the wordEncoding function.

enc = wordEncoding(documentsTrain);

The next conversion step is to pad and truncate documents so they are all the same
length. The trainingOptions function provides options to pad and truncate input
sequences automatically. However, these options are not well suited for sequences of
word vectors. Instead, pad and truncate the sequences manually. If you left-pad and
truncate the sequences of word vectors, then the training might improve.

To pad and truncate the documents, first choose a target length, and then truncate
documents that are longer than it and left-pad documents that are shorter than it. For
best results, the target length should be short without discarding large amounts of data.
To find a suitable target length, view a histogram of the training document lengths.
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Mumber of Documents

documentLengths = doclength(documentsTrain);
figure

histogram(documentLengths)

title("Document Lengths")

xlabel("Length")

ylabel("Number of Documents")

Document Lengths
4 D DD T T T T T T T T T

3500 7

3000 7

1500

1000

500

0 100 200 300 400 500 SO0 YOO 8OO
Length

Most of the training documents have fewer than 75 tokens. Use this as your target length
for truncation and padding.

Convert the documents to sequences of numeric indices using doc2sequence. To
truncate or left-pad the sequences to have length 75, set the 'Length' option to 75.
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XTrain = doc2sequence(enc,documentsTrain, 'Length',75);
XTrain(1:5)

ans = 5x1 cell array
{1x75 double}
{1x75 double}
{1x75 double}
{1x75 double}
{1x75 double}

Convert the validation documents to sequences using the same options.
XValidation = doc2sequence(enc,documentsValidation, 'Length',75);

Create and Train LSTM Network

Define the LSTM network architecture. To input sequence data into the network, include
a sequence input layer and set the input size to 1. Next, include a word embedding layer
of dimension 100 and the same number of words as the word encoding. Next, include an
LSTM layer and set the number of hidden units to 180. To use the LSTM layer for a
sequence-to-label classification problem, set the output mode to 'last'. Finally, add a
fully connected layer with the same size as the number of classes, a softmax layer, and a
classification layer.

inputSize = 1;

embeddingDimension = 100;

numWords = enc.NumWords;

numHiddenUnits = 180;

numClasses = numel(categories(YTrain));

layers = [
sequencelnputLayer(inputSize)
wordEmbeddinglLayer(embeddingDimension, numWords)
lstmLayer(numHiddenUnits, 'OutputMode', 'last")
fullyConnectedLayer(numClasses)
softmaxLayer
classificationlLayer]

layers =
6x1 Layer array with layers:

1 t Sequence Input Sequence input with 1 dimensions
2 Y Word Embedding Layer Word embedding layer with 100 dimensions and 169!
3 n LSTM LSTM with 180 hidden units
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4 t Fully Connected 39 fully connected layer
5 Y Softmax softmax
6 Y Classification Output crossentropyex

Specify the training options. Set the solver to 'adam’, train for 10 epochs, and set the
gradient threshold to 1. Set the initial learn rate to 0.01. To monitor the training progress,
set the 'Plots' optionto 'training-progress'. Specify the validation data using the
'ValidationData' option. To suppress verbose output, set 'Verbose' to false.

By default, trainNetwork uses a GPU if one is available (requires Parallel Computing
Toolbox™ and a CUDA® enabled GPU with compute capability 3.0 or higher). Otherwise,
it uses the CPU. To specify the execution environment manually, use the
'ExecutionEnvironment' name-value pair argument of trainingOptions. Training
on a CPU can take significantly longer than training on a GPU.

options = trainingOptions('adam',
'MaxEpochs', 10,
'GradientThreshold',1,
'InitialLearnRate',0.01,
'ValidationData', {XValidation,YValidation},
'Plots', 'training-progress"',
'Verbose', false);

Train the LSTM network using the trainNetwork function.

net = trainNetwork(XTrain,YTrain, layers,options);
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Test LSTM Network

To test the LSTM network, first prepare the test data in the same way as the training
data. Then make predictions on the preprocessed test data using the trained LSTM
network net.

Preprocess the test data using the same steps as the training documents.

textDataTest = lower(textDataTest);
documentsTest = tokenizedDocument(textDataTest);
documentsTest = erasePunctuation(documentsTest);

Convert the test documents to sequences using doc2sequence with the same options as
when creating the training sequences.

XTest

doc2sequence(enc,documentsTest, 'Length',75);
XTest(1:5)

1:
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ans = 5x1 cell array
{1x75 double}
{1x75 double}
{1x75 double}
{1x75 double}
{1x75 double}

Classify the test documents using the trained LSTM network.

YPred = classify(net, XTest);

Calculate the classification accuracy. The accuracy is the proportion of labels that the
network predicts correctly.

accuracy = sum(YPred == YTest)/numel(YPred)
accuracy = 0.8691

Predict Using New Data

Classify the event type of three new weather reports. Create a string array containing the
new weather reports.

reportsNew = [ ...
"Lots of water damage to computer equipment inside the office."
"A large tree is downed and blocking traffic outside Apple Hill."
"Damage to many car windshields in parking lot."];

Preprocess the text data using the preprocessing steps as the training documents.

documentsNew = preprocessText(reportsNew);

Convert the text data to sequences using doc2sequence with the same options as when
creating the training sequences.

XNew = doc2sequence(enc,documentsNew, 'Length',75);

Classify the new sequences using the trained LSTM network.

[labelsNew,score] = classify(net,XNew);

Show the weather reports with their predicted labels.

[reportsNew string(labelsNew)]
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ans = 3x2 string array

"Lots of water damage to computer equipment inside the office." "Flash Flood"
"A large tree is downed and blocking traffic outside Apple Hill." "Thunderstorm
"Damage to many car windshields in parking lot." "Hail"

Preprocessing Function

The function preprocessText performs these steps:

1 Tokenize the text using tokenizedDocument.
2 Convert the text to lowercase using Lower.
3  Erase the punctuation using erasePunctuation.

function documents = preprocessText(textData)

% Tokenize the text.
documents = tokenizedDocument(textData);

% Convert to lowercase.
documents = lower(documents);

% Erase punctuation.
documents = erasePunctuation(documents);

end

See Also

doc2sequence | fastTextWordEmbedding | LstmLayer | sequenceInputLayer |
tokenizedDocument | trainNetwork | trainingOptions | wordEmbeddinglLayer |
wordcloud

Related Examples

. “Classify Text Data Using Convolutional Neural Network” on page 2-76
. “Classify Out-of-Memory Text Data Using Deep Learning” on page 2-87
. “Generate Text Using Deep Learning” (Deep Learning Toolbox)

. “Word-By-Word Text Generation Using Deep Learning” on page 2-101

. “Create Simple Text Model for Classification” on page 2-2
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See Also

“Analyze Text Data Using Topic Models” on page 2-18

“Analyze Text Data Using Multiword Phrases” on page 2-9

“Train a Sentiment Classifier” on page 2-43

“Sequence Classification Using Deep Learning” (Deep Learning Toolbox)
“Deep Learning in MATLAB” (Deep Learning Toolbox)
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Classify Text Data Using Convolutional Neural Network

This example shows how to classify text data using a convolutional neural network.

To classify text data using convolutions, you must convert the text data into images. To do
this, pad or truncate the observations to have constant length S and convert the
documents into sequences of word vectors of length C using a word embedding. You can
then represent a document as a 1-by-S-by-C image (an image with height 1, width S, and
C channels).

To convert text data from a CSV file to images, create a tabularTextDatastore object.
The convert the data read from the tabularTextDatastore object to images for deep
learning by calling transform with a custom transformation function. The
transformTextData function, listed at the end of the example, takes data read from the
datastore and a pretrained word embedding, and converts each observation to an array of
word vectors.

This example trains a network with 1-D convolutional filters of varying widths. The width
of each filter corresponds the number of words the filter can see (the n-gram length). The
network has multiple branches of convolutional layers, so it can use different n-gram
lengths.

Load Pretrained Word Embedding

Load the pretrained fastText word embedding. This function requires the Text Analytics
Toolbox™ Model for fastText English 16 Billion Token Word Embedding support package.
If this support package is not installed, then the function provides a download link.

emb = fastTextWordEmbedding;

Load Data

Create a tabular text datastore from the data in weatherReportsTrain.csv. Read the
data from the "event narrative" and "event type" columns only.

filenameTrain = "weatherReportsTrain.csv";

textName = "event narrative";

labelName = "event type";

ttdsTrain = tabularTextDatastore(filenameTrain, 'SelectedVariableNames', [textName labell

Preview the datastore.
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ttdsTrain.ReadSize = 8;
preview(ttdsTrain)

ans=8x2 table

'Large tree down between Plantersville and Nettleton.

'One to two feet of deep standing water developed on a street on the Winthrop Unive
'"NWS Columbia relayed a report of trees blown down along Tom Hall St.'
'Media reported two trees blown down along I-40 in the 0ld Fort area.
'A few tree limbs greater than 6 inches down on HWY 18 in Roseland.'
"Awning blown off a building on Lamar Avenue. Multiple trees down near the interse
'Tin roof ripped off house on 0ld Memphis Road near Billings Drive. Several large -
'Powerlines down at Walnut Grove and Cherry Lane roads.'

Create a custom transform function that converts data read from the datastore to a table
containing the predictors and the responses. The transformTextData function, listed at
the end of the example, takes the data read from a tabularTextDatastore object and
returns a table of predictors and responses. The predictors are 1-by-sequencelLength-
by-C arrays of word vectors given by the word embedding emb, where C is the embedding
dimension. The responses are categorical labels over the classes in classNames.

Read the labels from the training data using the readlLabels function, listed at the end
of the example, and find the unique class names.

labels = readlLabels(ttdsTrain, labelName);
classNames = unique(labels);
numObservations = numel(labels);

Transform the datastore using transformTextData function and specify a sequence
length of 100.

sequencelength = 100;
tdsTrain = transform(ttdsTrain, @(data) transformTextData(data, sequencelLength,emb,clas:

tdsTrain =
TransformedDatastore with properties:

UnderlyingDatastore: [1x1 matlab.io.datastore.TabularTextDatastorel

Transforms: {@(data)transformTextData(data,sequenceLength,emb,classNames):
IncludeInfo: 0
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Preview the transformed datastore. The predictors are 1-by-S-by-C arrays, where S is the
sequence length and C is the number of features (the embedding dimension). The
responses are the categorical labels.

preview(tdsTrain)

ans=8x2 table
predictors responses

[1x100x300 single] Thunderstorm Wind
[1x100x300 single] Heavy Rain

[1x100x300 single] Thunderstorm Wind
[1x100x300 single] Thunderstorm Wind
[1x100x300 single] Thunderstorm Wind
[1x100x300 single] Thunderstorm Wind
[1x100x300 single] Thunderstorm Wind
[1x100x300 single] Thunderstorm Wind

Create a transformed datastore containing the validation data in
weatherReportsValidation.csv using the same steps.

filenameValidation = "weatherReportsValidation.csv";
ttdsValidation = tabularTextDatastore(filenameValidation, 'SelectedVariableNames', [textl

tdsValidation = transform(ttdsValidation, @(data) transformTextData(data, sequencelLengtl

tdsValidation =
TransformedDatastore with properties:

UnderlyingDatastore: [1x1 matlab.io.datastore.TabularTextDatastore]

Transforms: {@(data)transformTextData(data,sequenceLength,emb,classNames)
IncludeInfo: 0

Define Network Architecture
Define the network architecture for the classification task.

The following steps describe the network architecture.

* Specify an input size of 1-by-S-by-C, where S is the sequence length and C is the
number of features (the embedding dimension).
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» For the n-gram lengths 2, 3, 4, and 5, create blocks of layers containing a
convolutional layer, a batch normalization layer, a ReLU layer, a dropout layer, and a
max pooling layer.

» For each block, specify 200 convolutional filters of size 1-by-N and pooling regions of
size 1-by-S, where N is the n-gram length.

» Connect the input layer to each block and concatenate the outputs of the blocks using
a depth concatenation layer.

* To classify the outputs, include a fully connected layer with output size K, a softmax
layer, and a classification layer, where K is the number of classes.

First, in a layer array, specify the input layer, the first block for unigrams, the depth
concatenation layer, the fully connected layer, the softmax layer, and the classification
layer.

numFeatures = emb.Dimension;
inputSize = [1 sequencelLength numFeatures];
numFilters = 200;

ngramLengths = [2 3 4 5];
numBlocks = numel(ngramLengths);

numClasses = numel(classNames);

Create a layer graph containing the input layer. Set the normalization option to 'none'
and the layer name to 'input’.

layer = imagelnputlLayer(inputSize, 'Normalization', 'none', '"Name', 'input');
lgraph = layerGraph(layer);

For each of the n-gram lengths, create a block of convolution, batch normalization, ReLU,
dropout, and max pooling layers. Connect each block to the input layer.

for j = l:numBlocks
N = ngramLengths(j);
block = [

convolution2dLayer([1 N],numFilters, 'Name', "conv"+N, 'Padding', 'same"')
batchNormalizationLayer('Name', "bn"+N)

reluLayer('Name',"relu"+N)

dropoutLayer(0.2, '‘Name',"drop"+N)

maxPooling2dLayer([1 sequenceLength], ‘Name', "max"+N)];

lgraph = addLayers(lgraph,block);
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lgraph = connectlLayers(lgraph, 'input',"conv"+N);
end

View the network architecture in a plot.

figure
plot(lgraph)
title("Network Architecture")
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Add the depth concatenation layer, the fully connected layer, the softmax layer, and the
classification layer.

layers = [
depthConcatenationLayer(numBlocks, 'Name', 'depth')
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fullyConnectedLayer(numClasses, 'Name', 'fc')
softmaxLayer('Name', 'soft')
classificationLayer('Name', 'classification')];

lgraph = addLayers(lgraph, layers);
figure

plot(lgraph)
title("Network Architecture")
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Connect the max pooling layers to the depth concatenation layer and view the final
network architecture in a plot.
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for j 1:numBlocks
N ngramLengths(j);
lgraph = connectlLayers(lgraph, "max"+N, "depth/in"+j);

end

figure
plot(lgraph)
title("Network Architecture")
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Train Network
Specify the training options:

* Train for 10 epochs with a mini-batch size of 128.
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» Validate the network at each epoch by setting the validation frequency to the number

of iterations per epoch.

» Display the training progress plot and suppress the verbose output.

miniBatchSize = 128;

numIterationsPerEpoch = floor(numObservations/miniBatchSize);

options = trainingOptions('adam',
'MaxEpochs', 10,
'MiniBatchSize',miniBatchSize,
'ValidationData',tdsValidation,
'ValidationFrequency',numIterationsPerEpoch,
'Plots', 'training-progress',
'Verbose', false);

Train the network using the trainNetwork function.

net = trainNetwork(tdsTrain,lgraph,options);

Training Progress (02-Nov-2018 09:25:08)
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Test Network

Create a transformed datastore containing the held-out test data in
weatherReportsTest.csv.

filenameTest = "weatherReportsTest.csv";
ttdsTest = tabularTextDatastore(filenameTest, 'SelectedVariableNames', [textName labelNar

tdsTest = transform(ttdsTest, @(data) transformTextData(data, sequencelLength,emb, classN:

tdsTest =
TransformedDatastore with properties:

UnderlyingDatastore: [1x1 matlab.io.datastore.TabularTextDatastore]
Transforms: {@(data)transformTextData(data, sequencelLength,emb,classNames)
IncludeInfo: 0

Read the labels from the tabularTextDatastore.

labelsTest = readlLabels(ttdsTest,labelName);
YTest = categorical(labelsTest,classNames);

Make predictions on the test data using the trained network.
YPred = classify(net,tdsTest);

Calculate the classification accuracy on the test data.

accuracy = mean(YPred == YTest)
accuracy = 0.8670
Functions

The readLabels function creates a copy of the tabularTextDatastore object ttds
and reads the labels from the labelName column.

function labels = readLabels(ttds, labelName)
ttdsNew = copy(ttds);
ttdsNew.SelectedVariableNames = labelName;
tbl = readall(ttdsNew);

labels = tbl. (labelName);

end
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The transformTextData function takes the data read from a tabularTextDatastore
object and returns a table of predictors and responses. The predictors are 1-by-
sequencelength-by-C arrays of word vectors given by the word embedding emb, where
C is the embedding dimension. The responses are categorical labels over the classes in
classNames.

function dataTransformed = transformTextData(data, sequencelLength,emb,classNames)

% Preprocess documents.

textData data{:,1};

textData lower(textData);

documents = tokenizedDocument (textData);

% Convert documents to embeddingDimension-by-sequenceLength-by-1 images.
predictors = doc2sequence(emb,documents, 'Length', sequencelLength);

% Reshape images to be of size 1-by-sequencelLength-embeddingDimension.
predictors = cellfun(@(X) permute(X,[3 2 1]),predictors, 'UniformOutput', false);

% Read labels.
labels = data{:, 2};
responses = categorical(labels,classNames);

% Convert data to table.
dataTransformed = table(predictors, responses);

end

See Also

batchNormalizationLayer | convolution2dlLayer | doc2sequence |
fastTextWordEmbedding | layerGraph | tokenizedDocument | trainNetwork |
trainingOptions | wordEmbedding | wordcloud

Related Examples

. “Classify Text Data Using Deep Learning” on page 2-53

. “Classify Out-of-Memory Text Data Using Deep Learning” on page 2-87
. “Create Simple Text Model for Classification” on page 2-2

. “Analyze Text Data Using Topic Models” on page 2-18
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. “Analyze Text Data Using Multiword Phrases” on page 2-9

. “Train a Sentiment Classifier” on page 2-43

. “Sequence Classification Using Deep Learning” (Deep Learning Toolbox)
. “Deep Learning in MATLAB” (Deep Learning Toolbox)
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Classify Out-of-Memory Text Data Using Deep Learning

This example shows how to classify out-of-memory text data with a deep learning network
using a transformed datastore.

A transformed datastore transforms or processes data read from an underlying datastore
You can use a transformed datastore as a source of training, validation, test, and
prediction data sets for deep learning applications. Use transformed datastores to read
out-of-memory data or to perform specific preprocessing operations when reading
batches of data.

When training the network, the software creates mini-batches of sequences of the same
length by padding, truncating, or splitting the input data. The trainingOptions
function provides options to pad and truncate input sequences, however, these options
are not well suited for sequences of word vectors. Furthermore, this function does not
support padding data in a custom datastore. Instead, you must pad and truncate the
sequences manually. If you left-pad and truncate the sequences of word vectors, then the
training might improve.

The “Classify Text Data Using Deep Learning” on page 2-53 example manually truncates
and pads all the documents to the same length. This process adds lots of padding to very
short documents and discards lots of data from very long documents.

Alternatively, to prevent adding too much padding or discarding too much data, create a
transformed datastore that inputs mini-batches into the network. The datastore created in
this example converts mini-batches of documents to sequences or word indices and left-
pads each mini-batch to the length of the longest document in the mini-batch.

Load Pretrained Word Embedding

The datastore requires a word embedding to convert documents to sequences of vectors.
Load a pretrained word embedding using fastTextWordEmbedding. This function
requires Text Analytics Toolbox™ Model for fastText English 16 Billion Token Word
Embedding support package. If this support package is not installed, then the function
provides a download link.

emb = fastTextWordEmbedding;
Load Data

Create a tabular text datastore from the data in weatherReportsTrain. csv. Specify to
read the data from the "event narrative" and "event type" columns only.
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filenameTrain = "weatherReportsTrain.csv";
textName = "event narrative";
labelName "event type";

ttdsTrain tabularTextDatastore(filenameTrain, 'SelectedVariableNames', [textName labell

View a preview of the datastore.
preview(ttdsTrain)

ans=8x2 table

'Large tree down between Plantersville and Nettleton.

'One to two feet of deep standing water developed on a street on the Winthrop Unive
'NWS Columbia relayed a report of trees blown down along Tom Hall St.'
'Media reported two trees blown down along I-40 in the 0ld Fort area.
'A few tree limbs greater than 6 inches down on HWY 18 in Roseland.'
"Awning blown off a building on Lamar Avenue. Multiple trees down near the interse
'Tin roof ripped off house on 0ld Memphis Road near Billings Drive. Several large -
'Powerlines down at Walnut Grove and Cherry Lane roads.'

Transform Datastore

Create a custom transform function that converts data read from the datastore to a table
containing the predictors and the responses. The transformTextData function takes
the data read from a tabularTextDatastore object and returns a table of predictors
and responses. The predictors are C-by-S arrays of word vectors given by the word
embedding emb, where C is the embedding dimension and S is the sequence length. The
responses are categorical labels over the classes.

To get the class names, read the labels from the training data using the readLabels
function, listed and the end of the example, and find the unique class names.

labels = readlLabels(ttdsTrain, labelName);
classNames = unique(labels);
numObservations = numel(labels);

Because tablular text datastores can read multiple rows of data in a single read, you can
process a full mini-batch of data in the transform function. To ensure that the transform
function processes a full mini-batch of data, set the read size of the tabular text datastore
to the mini-batch size that will be used for training.
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miniBatchSize = 128;
ttdsTrain.ReadSize = miniBatchSize;

To convert the output of the tabular text data to sequences for training, transform the
datastore using the transform function.

tdsTrain = transform(ttdsTrain, @(data) transformTextData(data,emb,classNames))

tdsTrain =
TransformedDatastore with properties:

UnderlyingDatastore: [1x1 matlab.io.datastore.TabularTextDatastorel
Transforms: {@(data)transformTextData(data,emb,classNames)}
IncludeInfo: 0

Preview of the transformed datastore. The predictors are C-by-S arrays, where S is the
sequence length and C is the number of features (the embedding dimension). The
responses are the categorical labels.

preview(tdsTrain)

ans=8x2 table
predictors responses

[300x164 single] Thunderstorm Wind
[300x164 single] Heavy Rain

[300x164 single] Thunderstorm Wind
[300x164 single] Thunderstorm Wind
[300x164 single] Thunderstorm Wind
[300x164 single] Thunderstorm Wind
[300x164 single] Thunderstorm Wind
[300x164 single] Thunderstorm Wind

Create a transformed datastore containing the validation data in
weatherReportsValidation. csv using the same steps.

filenameValidation = "weatherReportsValidation.csv";

ttdsValidation = tabularTextDatastore(filenameValidation, 'SelectedVariableNames', [textl
ttdsValidation.ReadSize = miniBatchSize;

tdsValidation = transform(ttdsValidation, @(data) transformTextData(data,emb,className:

tdsValidation =
TransformedDatastore with properties:
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UnderlyingDatastore: [1x1 matlab.io.datastore.TabularTextDatastorel
Transforms: {@(data)transformTextData(data,emb,classNames)}
IncludeInfo: O

Create and Train LSTM Network

Define the LSTM network architecture. To input sequence data into the network, include
a sequence input layer and set the input size to the embedding dimension. Next, include
an LSTM layer with 180 hidden units. To use the LSTM layer for a sequence-to-label
classification problem, set the output mode to 'last'. Finally, add a fully connected layer
with output size equal to the number of classes, a softmax layer, and a classification layer.

numFeatures = emb.Dimension;

numHiddenUnits = 180;

numClasses = numel(classNames);

layers = [ ...
sequencelnputlLayer(numFeatures)
lstmLayer(numHiddenUnits, 'OutputMode', 'last')
fullyConnectedLayer(numClasses)
softmaxLayer
classificationLayer];

Specify the training options. Specify the solver to be 'adam' and the gradient threshold
to be 2. The datastore does not support shuffling, so set 'Shuffle', to 'never'.
Validate the network once per epoch. To monitor the training progress, set the 'Plots'
option to 'training-progress'. To suppress verbose output, set 'Verbose' to false.

By default, trainNetwork uses a GPU if one is available (requires Parallel Computing
Toolbox™ and a CUDA® enabled GPU with compute capability 3.0 or higher). Otherwise,
it uses the CPU. To specify the execution environment manually, use the
'ExecutionEnvironment' name-value pair argument of trainingOptions. Training
on a CPU can take significantly longer than training on a GPU.

numIterationsPerEpoch = floor(numObservations / miniBatchSize);

options = trainingOptions('adam',
'MaxEpochs', 15,
'MiniBatchSize',miniBatchSize,
'GradientThreshold', 2,
'Shuffle', 'never', ...
'ValidationData',tdsValidation,
'ValidationFrequency',numIterationsPerEpoch,
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'Plots', 'training-progress’',
'Verbose', false);

Train the LSTM network using the trainNetwork function.

net = trainNetwork(tdsTrain, layers,options);
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Test LSTM Network

Create a transformed datastore containing the held-out test data in
weatherReportsTest.csv.

filenameTest = "weatherReportsTest.csv";

ttdsTest = tabularTextDatastore(filenameTest, 'SelectedVariableNames', [textName labelNar
ttdsTest.ReadSize = miniBatchSize;

tdsTest = transform(ttdsTest, @(data) transformTextData(data,emb,classNames))

tdsTest =
TransformedDatastore with properties:
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UnderlyingDatastore: [1x1 matlab.io.datastore.TabularTextDatastorel
Transforms: {@(data)transformTextData(data,emb,classNames)}
IncludeInfo: O

Read the labels from the tabularTextDatastore.

labelsTest = readlLabels(ttdsTest,labelName);
YTest = categorical(labelsTest, classNames);

Make predictions on the test data using the trained network.
YPred = classify(net,tdsTest, 'MiniBatchSize',miniBatchSize);

Calculate the classification accuracy on the test data.

accuracy = mean(YPred == YTest)
accuracy = 0.8293
Functions

The readLabels function creates a copy of the tabularTextDatastore object ttds
and reads the labels from the labelName column.

function labels = readLabels(ttds, labelName)

ttdsNew = copy(ttds);
ttdsNew.SelectedVariableNames = labelName;
tbl = readall(ttdsNew);

labels = tbl. (labelName);

end

The transformTextData function takes the data read from a tabularTextDatastore
object and returns a table of predictors and responses. The predictors are C-by-S arrays
of word vectors given by the word embedding emb, where C is the embedding dimension
and S is the sequence length. The responses are categorical labels over the classes in
classNames.

function dataTransformed = transformTextData(data,emb,classNames)

% Preprocess documents.
textData = data{:,1};
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textData = lower(textData);
documents = tokenizedDocument (textData);

% Convert to sequences.
predictors = doc2sequence(emb,documents);

% Read labels.
labels = data{:, 2};
responses = categorical(labels,classNames);

% Convert data to table.
dataTransformed = table(predictors, responses);

end

See Also

doc2sequence | fastTextWordEmbedding | LstmLayer | sequenceInputLayer |
tokenizedDocument | trainNetwork | trainingOptions | wordEmbeddinglLayer

Related Examples

. “Create Simple Text Model for Classification” on page 2-2

. “Analyze Text Data Using Topic Models” on page 2-18

. “Analyze Text Data Using Multiword Phrases” on page 2-9

. “Train a Sentiment Classifier” on page 2-43

. “Sequence Classification Using Deep Learning” (Deep Learning Toolbox)
. “Deep Learning in MATLAB” (Deep Learning Toolbox)
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Pride and Prejudice and MATLAB

2-94

This example shows how to train a deep learning LSTM network to generate text using
character embeddings.

To train a deep learning network for text generation, train a sequence-to-sequence LSTM
network to predict the next character in a sequence of characters. To train the network to
predict the next character, specify the responses to be the input sequences shifted by one
time step.

To use character embeddings, convert each training observation to a sequence of
integers, where the integers index into a vocabulary of characters. Include a word
embedding layer in the network which learns an embedding of the characters and maps
the integers to vectors.

Load Training Data

Read the HTML code from The Project Gutenberg EBook of Pride and Prejudice, by Jane
Austen and parse it using webread and htmlTree.

url = "https://www.gutenberg.org/files/1342/1342-h/1342-h.htm";

code webread(url);
tree htmlTree(code);

Extract the paragraphs by finding the p elements. Specify to ignore paragraph elements
with class "toc" using the CSS selector ' :not(.toc)".

paragraphs = findElement(tree, 'p:not(.toc)');

Extract the text data from the paragraphs using extractHTMLText. and remove the
empty strings.

textData = extractHTMLText (paragraphs);
textData(textData == "") = [];

Remove strings shorter than 20 characters.

idx = strlength(textData) < 20;
textData(idx) = [1];

Visualize the text data in a word cloud.


https://www.gutenberg.org/files/1342/1342-h/1342-h.htm
https://www.gutenberg.org/files/1342/1342-h/1342-h.htm

Pride and Prejudice and MATLAB

figure
wordcloud(textData);
title("Pride and Prejudice")
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Convert Text Data to Sequences

Convert the text data to sequences of character indices for the predictors and categorical
sequences for the responses.

The categorical function treats newline and whitespace entries as undefined. To create
categorical elements for these characters, replace them with the special characters "q"
(pilcrow, "\x00B6") and "-" (middle dot, "\x00B7") respectively. To prevent ambiguity,
you must choose special characters that do not appear in the text. These characters do
not appear in the training data so can be used for this purpose.
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newlineCharacter = compose("\x00B6");
whitespaceCharacter = compose("\x00B7");
textData = replace(textData, [newline " "], [newlineCharacter whitespaceCharacter]);

Loop over the text data and create a sequence of character indices representing the
characters of each observation and a categorical sequence of characters for the
responses. To denote the end of each observation, include the special character "=" (end
of text, "\x2403").

end0fTextCharacter = compose("\x2403");
numDocuments = numel(textData);
for i = 1:numDocuments

characters = textData{i};

X = double(characters);

% Create vector of categorical responses with end of text character.
charactersShifted = [cellstr(characters(2:end)')' endOfTextCharacter];
Y = categorical(charactersShifted);

XTrain{i}
YTrain{i}

X;
Y;

end

During training, by default, the software splits the training data into mini-batches and
pads the sequences so that they have the same length. Too much padding can have a
negative impact on the network performance.

To prevent the training process from adding too much padding, you can sort the training
data by sequence length, and choose a mini-batch size so that sequences in a mini-batch
have a similar length.

Get the sequence lengths for each observation.

numObservations = numel(XTrain);
for i=1:numObservations
sequence = XTrain{i};
sequencelengths(i) = size(sequence,?2);
end

Sort the data by sequence length.

[~,1idx] = sort(sequencelLengths);
XTrain Train(idx);

=X
YTrain = YTrain(idx);
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Create and Train LSTM Network

Define the LSTM architecture. Specify a sequence-to-sequence LSTM classification
network with 400 hidden units. Set the input size to be the feature dimension of the
training data. For sequences of character indices, the feature dimension is 1. Specify a
word embedding layer with dimension 200 and specify the number of words (which
correspond to characters) to be the highest character value in the input data. Set the
output size of the fully connected layer to be the number of categories in the responses.
To help prevent overfitting, include a dropout layer after the LSTM layer.

The word embedding layer learns an embedding of characters and maps each character
to a 200-dimension vector.

inputSize = size(XTrain{l},1);
numClasses = numel(categories([YTrain{:}1));
numCharacters = max([textData{:}]);

layers = [
sequencelnputLayer(inputSize)
wordEmbeddinglLayer (200, numCharacters)
lstmLayer (400, 'OutputMode', 'sequence')
dropoutLayer(0.2);
fullyConnectedLayer(numClasses)
softmaxLayer
classificationLayer];

Specify the training options. Specify to train with a mini-batch size of 32 and initial learn
rate 0.01. To prevent the gradients from exploding, set the gradient threshold to 1. To
ensure the data remains sorted, set 'Shuffle' to 'never'. To monitor the training
progress, set the 'Plots' optionto 'training-progress'. To suppress verbose
output, set 'Verbose' to false.

options = trainingOptions('adam',
'MiniBatchSize',32,...
'InitiallLearnRate',0.01,
'GradientThreshold', 1,
'Shuffle', 'never',
'Plots', 'training-progress',
'Verbose', false);

Train the network.

net = trainNetwork(XTrain,YTrain, layers,options);
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Generate New Text

Generate the first character of the text by sampling a character from a probability
distribution according to the first characters of the text in the training data. Generate the
remaining characters by using the trained LSTM network to predict the next sequence
using the current sequence of generated text. Keep generating characters one-by-one
until the network predicts the "end of text" character.

Sample the first character according to the distribution of the first characters in the
training data.

initialCharacters = extractBefore(textData,?2);
firstCharacter = datasample(initialCharacters,1);
generatedText = firstCharacter;

Convert the first character to a numeric index.

X = double(char(firstCharacter));
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For the remaining predictions, sample the next character according to the prediction
scores of the network. The prediction scores represent the probability distribution of the
next character. Sample the characters from the vocabulary of characters given by the
class names of the output layer of the network. Get the vocabulary from the classification
layer of the network.

vocabulary = string(net.Layers(end).ClassNames);

Make predictions character by character using predictAndUpdateState. For each
prediction, input the index of the previous character. Stop predicting when the network
predicts the end of text character or when the generated text is 500 characters long. For
large collections of data, long sequences, or large networks, predictions on the GPU are
usually faster to compute than predictions on the CPU. Otherwise, predictions on the CPU
are usually faster to compute. For single time step predictions, use the CPU. To use the
CPU for prediction, set the 'ExecutionEnvironment' option of
predictAndUpdateStateto 'cpu’.

maxLength = 500;
while strlength(generatedText) < maxLength
% Predict the next character scores.
[net,characterScores] = predictAndUpdateState(net,X, 'ExecutionEnvironment', 'cpu');

% Sample the next character.
newCharacter = datasample(vocabulary,1, 'Weights',characterScores);

% Stop predicting at the end of text.

if newCharacter == endOfTextCharacter
break

end

% Add the character to the generated text.
generatedText = generatedText + newCharacter;

% Get the numeric index of the character.
X = double(char(newCharacter));
end

Reconstruct the generated text by replacing the special characters with their
corresponding whitespace and new line characters.

generatedText replace(generatedText, [newlineCharacter whitespaceCharacter], [newline '

generatedText =
"“I wish Mr. Darcy, upon latter of my sort sincerely fixed in the regard to relanth. W
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To generate multiple pieces of text, reset the network state between generations using
resetState.

net = resetState(net);

See Also

doc2sequence | extractHTMLText | findElement | htmlTree | LstmLayer |
sequencelInputlLayer | tokenizedDocument | trainNetwork | trainingOptions |
wordEmbeddinglLayer | wordcloud

Related Examples

. “Generate Text Using Deep Learning” (Deep Learning Toolbox)

. “Word-By-Word Text Generation Using Deep Learning” on page 2-101

. “Create Simple Text Model for Classification” on page 2-2

. “Analyze Text Data Using Topic Models” on page 2-18

. “Analyze Text Data Using Multiword Phrases” on page 2-9

. “Train a Sentiment Classifier” on page 2-43

. “Sequence Classification Using Deep Learning” (Deep Learning Toolbox)
. “Deep Learning in MATLAB” (Deep Learning Toolbox)
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Word-By-Word Text Generation Using Deep Learning

This example shows how to train a deep learning LSTM network to generate text word-by-
word.

To train a deep learning network for word-by-word text generation, train a sequence-to-
sequence LSTM network to predict the next word in a sequence of words. To train the
network to predict the next word, specify the responses to be the input sequences shifted
by one time step.

This example reads text from a website. It reads and parses the HTML code to extract the
relevant text, then uses a custom mini-batch datastore
documentGenerationDatastore to input the documents to the network as mini-
batches of sequence data. The datastore converts documents to sequences of numeric
word indices. The deep learning network is an LSTM network that contains a word
embedding layer.

A mini-batch datastore is an implementation of a datastore with support for reading data
in batches. You can use a mini-batch datastore as a source of training, validation, test,
and prediction data sets for deep learning applications. Use mini-batch datastores to read
out-of-memory data or to perform specific preprocessing operations when reading
batches of data.

You can adapt the custom mini-batch datastore documentGenerationDatastore.mto
your data by customizing the functions. For an example showing how to create your own
custom mini-batch datastore, see “Develop Custom Mini-Batch Datastore” (Deep Learning
Toolbox).

Load Training Data

Load the training data. Read the HTML code from Alice's Adventures in Wonderland by
Lewis Carroll from Project Gutenberg.

url = "https://www.gutenberg.org/files/11/11-h/11-h.htm";
code = webread(url);

Parse HTML Code
The HTML code contains the relevant text inside <p> (paragraph) elements. Extract the

relevant text by parsing the HTML code using htmlTree and then finding all the
elements with element name "p".
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tree = htmlTree(code);
selector = "p";
subtrees = findElement(tree,selector);

Extract the text data from the HTML subtrees using extractHTMLText and view the
first 10 paragraphs.

textData = extractHTMLText(subtrees);
textData(1:10)

ans = 10x1 string array

"Alice was beginning to get very tired of sitting by her sister on the bank, and o
"So she was considering in her own mind (as well as she could, for the hot day mad
"There was nothing so very remarkable in that; nor did Alice think it so very much
"In another moment down went Alice after it, never once considering how in the wor

Remove the empty paragraphs and view the first 10 remaining paragraphs.

textData(textData == "") = [];
textData(1:10)

ans = 10x1 string array
"Alice was beginning to get very tired of sitting by her sister on the bank, and o
"So she was considering in her own mind (as well as she could, for the hot day mad
"There was nothing so very remarkable in that; nor did Alice think it so very much
"In another moment down went Alice after it, never once considering how in the wor
"The rabbit-hole went straight on like a tunnel for some way, and then dipped sudde
"Either the well was very deep, or she fell very slowly, for she had plenty of time
"‘Well!’ thought Alice to herself, ‘after such a fall as this, I shall think nothi
"Down, down, down. Would the fall never come to an end! ‘I wonder how many miles I
"Presently she began again. ‘I wonder if I shall fall right through the earth! How
"Down, down, down. There was nothing else to do, so Alice soon began talking again

Visualize the text data in a word cloud.

figure
wordcloud(textData);
title("Alice's Adventures in Wonderland")



Word-By-Word Text Generation Using Deep Learning

Alice's Adventures in Wonderland
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Prepare Data for Training

Create a datastore that contains the data for training using
documentGenerationDatastore. To create the datastore, first save the custom mini-
batch datastore documentGenerationDatastore.m to the path. For the predictors, this
datastore converts the documents into sequences of word indices using a word encoding.
The first word index for each document corresponds to a "start of text" token. The "start
of text" token is given by the string "start0fText". For the responses, the datastore
returns categorical sequences of the words shifted by one.

Tokenize the text data using tokenizedDocument.

documents = tokenizedDocument (textData);
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Create a document generation datastore using the tokenized documents.

ds = documentGenerationDatastore(documents);

To reduce the amount of padding added to the sequences, sort the documents in the
datastore by sequence length.

ds = sort(ds);
Create and Train LSTM Network

Define the LSTM network architecture. To input sequence data into the network, include
a sequence input layer and set the input size to 1. Next, include a word embedding layer
of dimension 100 and the same number of words as the word encoding. Next, include an
LSTM layer and specify the hidden size to be 100. Finally, add a fully connected layer with
the same size as the number of classes, a softmax layer, and a classification layer. The
number of classes is the number of words in the vocabulary plus an extra class for the
"end of text" class.

inputSize = 1;

embeddingDimension = 100;

numWords = numel(ds.Encoding.Vocabulary);
numClasses = numWords + 1;

layers = [
sequencelnputlLayer(inputSize)
wordEmbeddinglLayer(embeddingDimension, numWords)
lstmLayer(100)
dropoutLayer(0.2)
fullyConnectedLayer(numClasses)
softmaxLayer
classificationLayer];

Specify the training options. Specify the solver to be 'adam'. Train for 300 epochs with

learn rate 0.01. Set the mini-batch size to 32. To keep the data sorted by sequence length,
set the 'Shuffle' option to 'never'. To monitor the training progress, set the 'Plots'
option to 'training-progress'. To suppress verbose output, set 'Verbose' to false.

options = trainingOptions('adam’,
'MaxEpochs',300, ...
'InitialLearnRate',0.01,
'MiniBatchSize', 32,
'Shuffle', 'never',
'Plots', 'training-progress’',
'Verbose', false);
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Train the network using trainNetwork.

net = trainNetwork(ds, layers,options);
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Generate New Text

Generate the first word of the text by sampling a word from a probability distribution
according to the first words of the text in the training data. Generate the remaining words
by using the trained LSTM network to predict the next time step using the current
sequence of generated text. Keep generating words one-by-one until the network predicts
the "end of text" word.

To make the first prediction using the network, input the index that represents the "start
of text" token. Find the index by using the word2ind function with the word encoding
used by the document datastore.

enc = ds.Encoding;
wordIndex = word2ind(enc,"startOfText")
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wordIndex = 1

For the remaining predictions, sample the next word according to the prediction scores of
the network. The prediction scores represent the probability distribution of the next word.
Sample the words from the vocabulary given by the class names of the output layer of the
network.

vocabulary = string(net.Layers(end).Classes);

Make predictions word by word using predictAndUpdateState. For each prediction,
input the index of the previous word. Stop predicting when the network predicts the end
of text word or when the generated text is 500 characters long. For large collections of
data, long sequences, or large networks, predictions on the GPU are usually faster to
compute than predictions on the CPU. Otherwise, predictions on the CPU are usually
faster to compute. For single time step predictions, use the CPU. To use the CPU for
prediction, set the 'ExecutionEnvironment' option of predictAndUpdateState to

cpu'.
generatedText = "";

maxLength = 500;

while strlength(generatedText) < maxLength

% Predict the next word scores.

[net,wordScores] = predictAndUpdateState(net,wordIndex, 'ExecutionEnvironment',

'cpu
% Sample the next word.
newWord = datasample(vocabulary,1l, 'Weights',wordScores);

% Stop predicting at the end of text.
if newWord == "EndOfText"

break
end

% Add the word to the generated text.
generatedText = generatedText + " " + newWord;

% Find the word index for the next input.
wordIndex = word2ind(enc,newWord);
end

The generation process introduces whitespace characters between each prediction, which
means that some punctuation characters appear with unnecessary spaces before and
after. Reconstruct the generated text by replacing removing the spaces before and after
the appropriate punctuation characters.
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Remove the spaces that appear before the specified punctuation characters.

punctuationcharacters = [II.II II,II nrn II)II II:II II?II 1] !II];
generatedText = replace(generatedText," " + punctuationCharacters,punctuationCharacter:

Remove the spaces that appear after the specified punctuation characters.

punctuationCharacters = ["(" "‘"];
generatedText = replace(generatedText,punctuationCharacters + " ",punctuationCharacter:
generatedText =

‘Sure, it’'s a good Turtle!’ said the Queen in a low, weak voice."

To generate multiple pieces of text, reset the network state between generations using
resetState.

net = resetState(net);

See Also

doc2sequence | extractHTMLText | findElement | htmlTree | LstmLayer |
sequencelnputlLayer | tokenizedDocument | trainNetwork | trainingOptions |
wordEmbeddinglLayer | wordcloud

Related Examples

. “Generate Text Using Deep Learning” (Deep Learning Toolbox)

. “Create Simple Text Model for Classification” on page 2-2

. “Analyze Text Data Using Topic Models” on page 2-18

. “Analyze Text Data Using Multiword Phrases” on page 2-9

. “Train a Sentiment Classifier” on page 2-43

. “Sequence Classification Using Deep Learning” (Deep Learning Toolbox)
. “Deep Learning in MATLAB” (Deep Learning Toolbox)
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Classify Out-of-Memory Text Data Using Custom Mini-
Batch Datastore
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This example shows how to classify out-of-memory text data with a deep learning network
using a custom mini-batch datastore.

A mini-batch datastore is an implementation of a datastore with support for reading data
in batches. You can use a mini-batch datastore as a source of training, validation, test,
and prediction data sets for deep learning applications. Use mini-batch datastores to read
out-of-memory data or to perform specific preprocessing operations when reading
batches of data.

When training the network, the software creates mini-batches of sequences of the same
length by padding, truncating, or splitting the input data. The trainingOptions
function provides options to pad and truncate input sequences, however, these options
are not well suited for sequences of word vectors. Furthermore, this function does not
support padding data in a custom datastore. Instead, you must pad and truncate the
sequences manually. If you left-pad and truncate the sequences of word vectors, then the
training might improve.

The “Classify Text Data Using Deep Learning” on page 2-53 example manually truncates
and pads all the documents to the same length. This process adds lots of padding to very
short documents and discards lots of data from very long documents.

Alternatively, to prevent adding too much padding or discarding too much data, create a
custom mini-batch datastore that inputs mini-batches into the network. The custom mini-
batch datastore textDatastore.m converts mini-batches of documents to sequences or
word indices and left-pads each mini-batch to the length of the longest document in the
mini-batch. For sorted data, this datastore can help reduce the amount of padding added
to the data since documents are not padded to a fixed length. Similarly, the datastore does
not discard any data from the documents.

This example uses the custom mini-batch datastore textDatastore.m. You can adapt
this datastore to your data by customizing the functions. For an example showing how to
create your own custom mini-batch datastore, see “Develop Custom Mini-Batch
Datastore” (Deep Learning Toolbox).

Load Pretrained Word Embedding

The datastore textDatastore requires a word embedding to convert documents to
sequences of vectors. Load a pretrained word embedding using
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fastTextWordEmbedding. This function requires Text Analytics Toolbox™ Model for
fastText English 16 Billion Token Word Embedding support package. If this support
package is not installed, then the function provides a download link.

emb = fastTextWordEmbedding;

Create Mini-Batch Datastore of Documents

Create a datastore that contains the data for training. The custom mini-batch datastore
textDatastore reads predictors and labels from a CSV file. For the predictors, the
datastore converts the documents into sequences of word indices and for the responses,
the datastore returns a categorical label for each document.

To create the datastore, first save the custom mini-batch datastore textDatastore.mto
the path. For more information about creating custom mini-batch datastores, see
“Develop Custom Mini-Batch Datastore” (Deep Learning Toolbox).

For the training data, specify the CSV file "weatherReportsTrain.csv" and that the
text and labels are in the columns "event narrative" and "event type"
respectively.

filenameTrain = "weatherReportsTrain.csv";

textName = "event narrative";

labelName = "event type";

dsTrain = textDatastore(filenameTrain, textName, labelName, emb)

dsTrain =
textDatastore with properties:

ClassNames: [1x39 string]
Datastore: [1x1 matlab.io.datastore.TransformedDatastore]
EmbeddingDimension: 300
LabelName: "event type"
MiniBatchSize: 128
NumClasses: 39
NumObservations: 19683

Create a datastore containing the validation data from the CSV file
"weatherReportsValidation.csv" using the same steps.

filenameValidation = "weatherReportsValidation.csv";
dsValidation = textDatastore(filenameValidation, textName, labelName,emb)
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dsValidation =
textDatastore with properties:

ClassNames: [1x39 string]
Datastore: [1x1 matlab.io.datastore.TransformedDatastore]
EmbeddingDimension: 300
LabelName: "event type"
MiniBatchSize: 128
NumClasses: 39
NumObservations: 4218

Create and Train LSTM Network

Define the LSTM network architecture. To input sequence data into the network, include
a sequence input layer and set the input size to the embedding dimension. Next, include
an LSTM layer with 180 hidden units. To use the LSTM layer for a sequence-to-label
classification problem, set the output mode to ' last'. Finally, add a fully connected layer
with output size equal to the number of classes, a softmax layer, and a classification layer.

numFeatures = dsTrain.EmbeddingDimension;
numHiddenUnits = 180;
numClasses = dsTrain.NumClasses;

layers = [ ...
sequencelnputLayer(numFeatures)
lstmLayer(numHiddenUnits, 'OutputMode', 'last")
fullyConnectedLayer(numClasses)
softmaxLayer
classificationLayer];

Specify the training options. Specify the solver to be 'adam' and the gradient threshold
to be 2. The datastore textDatastore.m does not support shuffling, so set 'Shuffle’,
to 'never'. For an example showing how to implement a datastore with support for
shuffling, see “Develop Custom Mini-Batch Datastore” (Deep Learning Toolbox). Validate
the network once per epoch. To monitor the training progress, set the 'Plots' option to
"training-progress'. To suppress verbose output, set 'Verbose' to false.

By default, trainNetwork uses a GPU if one is available (requires Parallel Computing
Toolbox™ and a CUDA® enabled GPU with compute capability 3.0 or higher). Otherwise,
it uses the CPU. To specify the execution environment manually, use the
'ExecutionEnvironment' name-value pair argument of trainingOptions. Training
on a CPU can take significantly longer than training on a GPU.
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miniBatchSize = 128;
numObservations = dsTrain.NumObservations;
numIterationsPerEpoch = floor(numObservations / miniBatchSize);

options = trainingOptions('adam’,
'MaxEpochs',15,
'MiniBatchSize',miniBatchSize,
'GradientThreshold',?2,
'Shuffle', 'never',
'ValidationData',dsValidation,
'ValidationFrequency',numIterationsPerEpoch,
'Plots', 'training-progress',
'Verbose', false);

Train the LSTM network using the trainNetwork function.

net = trainNetwork(dsTrain, layers,options);
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Test LSTM Network

Create a datastore containing the documents and the labels

filenameTest = "weatherReportsTest.csv";
dsTest = textDatastore(filenameTest, textName, labelName,emb)

dsTest =
textDatastore with properties:

ClassNames: [1x39 string]
Datastore: [1x1l matlab.io.datastore.TransformedDatastore]
EmbeddingDimension: 300
LabelName: "event type"
MiniBatchSize: 128
NumClasses: 39
NumObservations: 4217

Read the labels from the datastore using the readLabels function of the custom
datastore.

YTest = readLabels(dsTest);
Classify the test documents using the trained LSTM network.

YPred = classify(net,dsTest);

Calculate the classification accuracy. The accuracy is the proportion of labels that the
network predicts correctly.

accuracy = mean(YPred == YTest)

accuracy = 0.8084

See Also

doc2sequence | extractHTMLText | findElement | htmlTree | LstmLayer |
sequencelInputlLayer | tokenizedDocument | trainNetwork | trainingOptions |
wordEmbeddinglLayer | wordcloud
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Related Examples

“Generate Text Using Deep Learning” (Deep Learning Toolbox)

“Create Simple Text Model for Classification” on page 2-2

“Analyze Text Data Using Topic Models” on page 2-18

“Analyze Text Data Using Multiword Phrases” on page 2-9

“Train a Sentiment Classifier” on page 2-43

“Sequence Classification Using Deep Learning” (Deep Learning Toolbox)
“Deep Learning in MATLAB” (Deep Learning Toolbox)
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* “Visualize Text Data Using Word Clouds” on page 3-2
* “Visualize Word Embeddings Using Text Scatter Plots” on page 3-8
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Visualize Text Data Using Word Clouds

3-2

This example shows how to visualize text data using word clouds.

Text Analytics Toolbox extends the functionality of the wordcloud (MATLAB) function. It
adds support for creating word clouds directly from string arrays and creating word
clouds from bag-of-words models and LDA topics.

Load the example data. The file weatherReports. csv contains weather reports,
including a text description and categorical labels for each event.

filename = "weatherReports.csv";
T = readtable(filename, 'TextType', 'string');

Extract the text data from the event_narrative column.

textData = T.event narrative;
textData(1:10)

ans = 10x1 string array
"Large tree down between Plantersville and Nettleton."
"One to two feet of deep standing water developed on a street on the Winthrop Unive
"NWS Columbia relayed a report of trees blown down along Tom Hall St."
"Media reported two trees blown down along I-40 in the 0ld Fort area."
"A few tree limbs greater than 6 inches down on HWY 18 in Roseland."
"Awning blown off a building on Lamar Avenue. Multiple trees down near the interse
"Quarter size hail near Rosemark."
"Tin roof ripped off house on 0ld Memphis Road near Billings Drive. Several large -
"Powerlines down at Walnut Grove and Cherry Lane roads."

Create a word cloud from all the weather reports.

figure
wordcloud(textData);
title("Weather Reports")
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Weather Reports
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Compare the words in the reports with labels "Hail" and "Thunderstorm Wind".
Create word clouds of the reports for each of these labels. Specify the word colors to be
blue and magenta for each word cloud respectively.

figure
labels = T.event type;

subplot(1,2,1)

idx = labels == "Hail";
wordcloud(textData(idx), 'Color', 'blue');
title("Hail")

subplot(1,2,2)
idx = labels == "Thunderstorm Wind";
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wordcloud(textData(idx), 'Color', 'magenta');
title("Thunderstorm Wind")
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Compare the words in the reports from the states Florida, Kansas, and Alaska. Create
word clouds of the reports for each of these states in rectangles and draw a border
around each word cloud.

figure
state = T.state;

subplot(1,3,1)

idx = state == "FLORIDA";

wordcloud(textData(idx), 'Shape', 'rectangle', 'Box"','on');
title("Florida")
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subplot(1,3,2)

idx = state == "KANSAS";

wordcloud(textData(idx), 'Shape', 'rectangle', 'Box"','on');
title("Kansas")

subplot(1,3,3)

idx = state == "ALASKA";

wordcloud(textData(idx), 'Shape', 'rectangle', 'Box','on');
title("Alaska")
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Compare the words in the reports with property damage reported in thousands of dollars
to the reports with damage reported in millions of dollars. Create word clouds of the
reports for each of these amounts with highlight color blue and red respectively.
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cost = T.damage property;

idx = endsWith(cost, "K");

figure

wordcloud(textData(idx), 'HighlightColor', 'blue');
title("Damage Reported in Thousands")

Damage Reported in Thousands
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idx = endsWith(cost,"M");

figure

wordcloud(textData(idx), 'HighlightColor', 'red');
title("Damage Reported in Millions")
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See Also

bagO0fWords | tokenizedDocument | wordcloud

Related Examples

. “Prepare Text Data for Analysis” on page 1-12

. “Analyze Text Data Using Topic Models” on page 2-18

. “Classify Text Data Using Deep Learning” on page 2-53

. “Visualize Word Embeddings Using Text Scatter Plots” on page 3-8
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Visualize Word Embeddings Using Text Scatter Plots

3-8

This example shows how to visualize word embeddings using 2-D and 3-D t-SNE and text
scatter plots.

Word embeddings map words in a vocabulary to real vectors. The vectors attempt to
capture the semantics of the words, so that similar words have similar vectors. Some
embeddings also capture relationships between words like "Italy is to France as Rome is
to Paris". In vector form, this relationship is Italy — Rome + Paris = France.

To reproduce the results in this example, set rng to 'default’.
rng(‘'default")
Load Pretrained Word Embedding

Load a pretrained word embedding using fastTextWordEmbedding. This function
requires Text Analytics Toolbox™ Model for fastText English 16 Billion Token Word
Embedding support package. If this support package is not installed, then the function
provides a download link.

emb = fastTextWordEmbedding

emb =
wordEmbedding with properties:

Dimension: 300
Vocabulary: [1x999994 string]

Explore the word embedding using word2vec and vec2word. Convert the words Italy,
Rome, and Paris to vectors using word2vec.

italy = word2vec(emb,"Italy");
rome = word2vec(emb, "Rome");
paris = word2vec(emb, "Paris");

Compute the vector given by italy - rome + paris. This vector encapsulates the
semantic meaning of the word Italy, without the semantics of the word Rome, and also
includes the semantics of the word Paris.

vec = italy - rome + paris

vec = 1x300 single row vector
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0.1606 -0.0690 0.1183 -0.0349 0.0672 0.0907 -0.1820 -0.0080 0.

Find the closest words in the embedding to vec using vec2word.

word vec2word(emb,vec)

word =
"France"

Create 2-D Text Scatter Plot

Visualize the word embedding by creating a 2-D text scatter plot using tsne and
textscatter.

Convert the first 500 words to vectors using word2vec. V is a matrix of word vectors of
length 300.

words = emb.Vocabulary(1:5000);
V = word2vec(emb,words);
size(V)

ans = 1x2

5000 300

Embed the word vectors in two-dimensional space using tsne. This function may take a
few minutes to run. If you want to display the convergence information, then set the
'Verbose' name-value pair to 1.

XY = tsne(V);

Plot the words at the coordinates specified by XY in a 2-D text scatter plot. For readability,
textscatter, by default, does not display all of the input words and displays markers
instead.

figure

textscatter(XY,words)
title("Word Embedding t-SNE Plot")
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Word Embedding t-SNE Plot
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Zoom in on a section of the plot.

xlim([-18 -5]
ylim([11 21])
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Word Embedding t-SNE Plot
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Create 3-D Text Scatter Plot

Visualize the word embedding by creating a 3-D text scatter plot using tsne and

textscatter.

Convert the first 5000 words to vectors using word2vec. V is a matrix of word vectors of

length 300.

words = emb.Vocabulary(1:5000);
V = word2vec(emb,words) ;
size(V)

ans = 1Ix2
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5000 300

Embed the word vectors in a three-dimensional space using tsne by specifying the
number of dimensions to be three. This function may take a few minutes to run. If you
want to display the convergence information, then you can set the 'Verbose' name-
value pair to 1.

XYZ = tsne(V, 'NumDimensions',3);
Plot the words at the coordinates specified by XYZ in a 3-D text scatter plot.
figure

ts = textscatter3(XYZ,words);
title("3-D Word Embedding t-SNE Plot")
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3-D Word Embedding t-SNE Plot
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Zoom in on a section of the plot.

x1im([12.04 19.48])
ylim([-2.66 3.40])
z1lim([10.03 14.53])
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3-D Word Embedding t-SNE Plot
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Perform Cluster Analysis

Convert the first 5000 words to vectors using word2vec. V is a matrix of word vectors of
length 300.

words = emb.Vocabulary(1:5000);
V = word2vec(emb,words) ;
size(V)

ans = 1x2

5000 300

Discover 25 clusters using kmeans.
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cidx = kmeans(V,25, 'dist', 'sgeuclidean');

Visualize the clusters in a text scatter plot using the 2-D t-SNE data coordinates
calculated earlier.

figure

textscatter(XY,words, 'ColorData', categorical(cidx));
title("Word Embedding t-SNE Plot")

Word Embedding t-SNE Plot

-40 r
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Zoom in on a section of the plot.

xUim([13 24])
ylim([-47 -35])
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Word Embedding t-SNE Plot
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See Also

readWordEmbedding | textscatter | textscatter3 | tokenizedDocument |

vec2word | word2vec | wordEmbedding

Related Examples

. “Extract Text Data from Files” on page 1-2

. “Prepare Text Data for Analysis” on page 1-12

. “Visualize Text Data Using Word Clouds” on page 3-2

. “Classify Text Data Using Deep Learning” on page 2-53
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+ “Language Considerations” on page 4-2

* “Japanese Language Support” on page 4-6

* “Analyze Japanese Text Data” on page 4-12

* “German Language Support” on page 4-26

* “Analyze German Text Data” on page 4-33

* “Language-Independent Features” on page 4-47
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Language Considerations

4-2

Text Analytics Toolbox supports the languages English, Japanese, and German. Most Text
Analytics Toolbox functions also work with text in other languages. This table summarizes
how to use Text Analytics Toolbox features for other languages.

Feature

Language Consideration

Workaround

Tokenization

The tokenizedDocument
function has built-in rules
for English, Japanese, and
German only. For English
and German text, the
'unicode' tokenization
method of
tokenizedDocument
detects tokens using rules
based on Unicode®
Standard Annex #29 [1] and
the ICU tokenizer [2],
modified to better detect
complex tokens such as
hashtags and URLs. For
Japanese text, the 'mecab’
tokenization method detects
tokens using rules based on
the MeCab tokenizer [3].

For other languages, you
can still try using
tokenizedDocument. If
tokenizedDocument does
not produce useful results,
then try tokenizing the text
manually. To create a
tokenizedDocument array
from manually tokenized
text, set the
'TokenizeMethod' option
to 'none’.

For more information, see
tokenizedDocument.

Stop word removal

The stopWords and
removeStopWords
functions support English,
Japanese, and German stop
words only.

To remove stop words from
other languages, use
removeWords and specify
your own stop words to
remove.
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Feature

Language Consideration

Workaround

Sentence detection

The addSentenceDetails
function detects sentence
boundaries based on
punctuation characters and
line number information.
For English and German
text, the function also uses a
list of abbreviations passed
to the function.

For other languages, you
might need to specify your
own list of abbreviations for
sentence detection. To do
this, use the
'Abbreviations' option
of addSentenceDetails.

For more information, see
addSentenceDetails.

Word clouds

For string input, the
wordcloud function uses
English, Japanese, and
German tokenization, stop
word removal, and word
normalization.

For other languages, you
might need to manually
preprocess your text data
and specify unique words
and corresponding sizes in
wordcloud.

To specify word sizes in
wordcloud, input your data
as a table or arrays
containing the unique words
and corresponding sizes.

For more information, see
wordcloud.
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Feature Language Consideration |(Workaround

Word embeddings File input to the For files containing non-
trainWordEmbedding English text, you might need
function requires words to input a
separated by whitespace. tokenizedDocument array

to trainWordEmbedding.

To create a
tokenizedDocument array
from pretokenized text, use
the tokenizedDocument
function and set the
'TokenizeMethod' option
to 'none’.

For more information, see
trainWordEmbedding.

Language-Independent Features

Word and N-Gram Counting

The bag0fWords and bag0fNgrams functions support tokenizedDocument input
regardless of language. If you have a tokenizedDocument array containing your data,
then you can use these functions.

Modeling and Prediction

The fitlda and fitlsa functions support bagOfWords and bagOfNgrams input
regardless of language. If you have a bagOfWords or bagOfNgrams object containing
your data, then you can use these functions.

The trainWordEmbedding function supports tokenizedDocument or file input

regardless of language. If you have a tokenizedDocument array or a file containing
your data in the correct format, then you can use this function.

References

[1] Unicode Text Segmentation. https://www.unicode.org/reports/tr29/



https://www.unicode.org/reports/tr29/

See Also

[2] Boundary Analysis. http://userguide.icu-project.org/boundaryanalysis

[3] MeCab: Yet Another Part-of-Speech and Morphological Analyzer. https://
taku910.github.io/mecab/

See Also

addLanguageDetails | addSentenceDetails | bag0OfNgrams | bagOfWords |
fitlda | fitlsa | normalizeWords | removeWords | stopWords |
tokenizedDocument | wordcloud

More About

. “Text Data Preparation”

. “Modeling and Prediction”

. “Display and Presentation”

. “Japanese Language Support” on page 4-6

. “Analyze Japanese Text Data” on page 4-12
. “German Language Support” on page 4-26
. “Analyze German Text Data” on page 4-33
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4 Language Support

Japanese Language Support

This topic summarizes the Text Analytics Toolbox features that support Japanese text. For
an example showing how to analyze Japanese text data, see “Analyze Japanese Text Data”
on page 4-12.

Tokenization

The tokenizedDocument function automatically detects Japanese input. Alternatively,
set the 'Language’ option in tokenizedDocument to 'ja'. This option specifies the
language details of the tokens. To view the language details of the tokens, use
tokenDetails. These language details determine the behavior of the
removeStopWords, addPart0fSpeechDetails, normalizeWords,
addSentenceDetails, and addEntityDetails functions on the tokens.

Tokenize Japanese Text

Tokenize Japanese text using tokenizedDocument. The function automatically detects
Japanese text.

str = [
"IRICINA, BLD, "
"EDWMATELD, "
"EIZEMNES, BRLOATWS, "
"EQENESTEFIEL TS, "];
documents = tokenizedDocument(str)

documents =
4x1 tokenizedDocument:

6 tokens: 7% [T ¥A& . EBELD
6 tokens: X ® & T HLL
10 tokens: Z= 2 2 A #EE . B T W5,
10 tokens: Z& M E M 1#BE= F L T W5 ,

Part of Speech Details

The tokenDetails function, by default, includes part of speech details with the token
details.
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Get Part of Speech Details of Japanese Text

Tokenize Japanese text using tokenizedDocument.

str = [
"ARICHA. BELD, "
"EDWAT ELD, "
"EIZENES, BLITWS, "
"EDENEETEFEL TS, "
"ERETIXEL T, HHFAEWL, "
"mLDRETEHIFEL, "
"FHE3EEEBLBDOB, "];
documents = tokenizedDocument(str);

For Japanese text, you can get the part-of-speech details using tokenDetails. For
English text, you must first use addPart0fSpeechDetails.

tdetails = tokenDetails(documents);

head(tdetails)

ans=8x8 table
Token DocumentNumber LineNumber Type Language PartOfSpeech
nE 1 1 letters ja noun
Iz 1 1 letters ja adposition
"R 1 1 letters ja verb
o 1 1 punctuation ja punctuation
"ELD" 1 1 letters ja verb
o 1 1 punctuation ja punctuation
na 2 1 letters ja noun
"o 2 1 letters ja adposition

Named Entity Recognition
To add entity tags to documents, use the addEntityDetails function.
Add Named Entity Tags to Japanese Text

Tokenize Japanese text using tokenizedDocument.

str = [
"T)—EAEFRRA NS Za—3 (25| LEL, "
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"ERCTHASAITDZIZITEET, "

"HRITKREYKEWLTT M2

"HRIZITo1-B. FIBEREALTEVWAWNALRFIZHN-FE L=, "];
documents = tokenizedDocument(str);

For Japanese text, the software automatically adds named entity tags, so you do not need
to use the addEntityDetails function. This software detects person names, locations,
organizations, and other named entities. To view the entity details, use the
tokenDetails function.

tdetails = tokenDetails(documents);

head(tdetails)
ans=8x8 table
Token DocumentNumber LineNumber Type Language Part0OfSpeecl

=" 1 1 letters ja proper-noun
"EA 1 1 letters ja noun
& 1 1 letters ja adposition
"RA R 1 1 letters ja proper-noun
"t 1 1 letters ja adposition
"Za—3—4" 1 1 letters ja proper-noun
e 1 1 letters ja adposition
"FlofL" 1 1 letters ja verb

View the words tagged with entity "person", "location", "organization", or
"other". These words are the words not tagged "non-entity".

idx = tdetails.Entity ~= "non-entity";
tdetails(idx,:).Token

ans = 11x1 string array
ng ) —n
”é/\_/"
"RA LU
II:J_3_7"
"R
”é/\_/"
Ili:q‘l:ll
IIKBEII
Ili:q‘l:ll
"HE"
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[TINT=/ N\
2%

Stop Words

To remove stop words from documents according to the token language details, use
removeStopWords. For a list of Japanese stop words set the 'Language’ option in
stopWords to 'ja'.

Remove Japanese Stop Words

Tokenize Japanese text using tokenizedDocument. The function automatically detects
Japanese text.

str = [
"CCIEFEMNGEDT, ETHREONTT"
"TENODBEET—FEFAL. SEOFTY LITERARDZ ZEAHEL, "
"FAEERETT, FAFEZBEHATWET, "];

documents = tokenizedDocument(str);

Remove stop words using removeStopWords. The function uses the language details
from documents to determine which language stop words to remove.

documents = removeStopWords(documents)

documents =
3x1 tokenizedDocument:

4 tokens: #M . &TH EOHM
10 tokens: % FBEE T—42 FH . SF F{Y LT FARD HE .
5 tokens: &% ., EE X .

Lemmatization

To lemmatize tokens according to the token language details, use normalizeWords and
set the 'Style' optionto 'lemma’.
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Lemmatize Japanese Text

Tokenize Japanese text using the tokenizedDocument function. The function
automatically detects Japanese text.

str = [
"EIZEMNEE. BULTWLD, "
"EDEMNEETEFEL TS, "
"BRETIELS T, HFHEL, "
"B DERETHF L, "];
documents = tokenizedDocument(str);

Lemmatize the tokens using normalizeWords.
documents = normalizeWords(documents)

documents =
4x1 tokenizedDocument:

10 tokens: Z= 2 2 A #< . BB T W3,
10 tokens: ZZ M 2 A #EE % I T VB,
9 tokens: BR T [X &L T . FHIFdH %L,
7 tokens: &L M BR T HIF5 %Ly,

Language-Independent Features
Word and N-Gram Counting

The bag0OfWords and bag0fNgrams functions support tokenizedDocument input
regardless of language. If you have a tokenizedDocument array containing your data,
then you can use these functions.

Modeling and Prediction

The fitlda and fitlsa functions support bag0fWords and bagO0fNgrams input
regardless of language. If you have a bag0fWords or bagOfNgrams object containing
your data, then you can use these functions.

The trainWordEmbedding function supports tokenizedDocument or file input
regardless of language. If you have a tokenizedDocument array or a file containing
your data in the correct format, then you can use this function.



See Also

See Also

addEntityDetails | addLanguageDetails | addPart0fSpeechDetails |
normalizeWords | removeStopWords | stopWords | tokenDetails |
tokenizedDocument

More About
. “Language Considerations” on page 4-2
. “Analyze Japanese Text Data” on page 4-12
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Analyze Japanese Text Data

4-12

This example shows how to import, prepare, and analyze Japanese text data using a topic
model.

Japanese text data can be large and can contain lots of noise that negatively affects
statistical analysis. For example, the text data can contain the following:

 Variations in word forms. For example, "8 L \\" ("is difficult") and "8 L A = /=" ("was
difficult")

» Words that add noise. For example, stop words such as "& & <" ("over there"), "& 7=
)" ("around"), and "& 5 5" ("there")

* Punctuation and special characters

These word clouds illustrate word frequency analysis applied to some raw text data from
"EER}IETHS" by EBERA, and a preprocessed version of the same text data.
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Raw Data
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This example first shows how to import and prepare Japanese text data, and then it shows
how to analyze the text data using a Latent Dirichlet Allocation (LDA) model. An LDA
model is a topic model that discovers underlying topics in a collection of documents and
infers the word probabilities in topics. Use these steps in preparing the text data and

fitting the model:

¢ Read HTML code from a website.

* Parse the HTML code and extract the relevant data.
* Prepare the text data for analysis using standard preprocessing techniques.
» Fit a topic model and visualize the results.
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Import Data

Read the data from "EEFIETH %" by E B R A from https://www.aozora.gr.jp/cards/
000148/files/789 14547.html using the webread function.

Specify the character encoding of the text using the weboptions function. To find the
correct character encoding for an HTML, look in the header of the HTML code. For this
file, specify the character encoding to be "Shift JIS".

url = "https://www.aozora.gr.jp/cards/000148/files/789 14547.html";
options = weboptions('CharacterEncoding', 'Shift JIS');
code = webread(url,options);

View the first few lines of the HTML code.
extractBefore(code, "<script")

ans =

'<?xml version="1.0" encoding="Shift JIS"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.0rg/TR/xhtml11/DTD/xhtml11l.dtd">

<html xml:lang="ja" >

<head>
<meta http-equiv="Content-Type" content="text/html;charset=Shift JIS" />
<meta http-equiv="content-style-type" content="text/css" />
<link rel="stylesheet" type="text/css" href="../../aozora.css" />
<title>EB#E BEIFETHLH</title>

Extract the text data from the HTML using extractHTMLText. Split the text by newline
characters.

textData = extractHTMLText(code);
textData = string(split(textData,newline));
textData(1:10)

ans = 10x1 string array
"BEEIETHD"
"EE®A"
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" BERETHD, BENTFELEN, "
" ECTENENEALEREN DN, AITELERBVLOHLO LM T y— oy —a TV =ELIFIEERE
Remove the empty lines of text.
idx = textbata == "";
textData(idx) = [1;
textData(1:10)

ans = 10x1 string array

"EEHETHD"
"ERRA"
" BEIIETHD. BENEILEL,

ECTENENEALERLEA DN, AITHLEBOLCHLOLIEMTZy—Z v —H VTV =EEIFIEERE
CHOELEDENETLELGCFEVDFFICASTE o1, LIS TEHELEFELGENTEGLIED =, F
SESAFVTRD EELERFVGL, KEABEABA—ELRAH, FLOBRSZAEEZRLTLE-
FOPKDBNTHEREEVET EMIICKEGMNH D, BETMOANL>TES LIzoLMND S EE
EEDTANFTRBICELELEZAEDIENGL, BEIEEZE S, FRNOFDIERBEFITEA O1=:

Visualize the text data in a word cloud.

figure
wordcloud(textData);
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Tokenize Documents

Tokenize the text using tokenizedDocument and view the first few documents.

documents = tokenizedDocument (textData);
documents(1:10)

ans =
10x1 tokenizedDocument:

5 tokens: B#E (X 8 T H5
2 tokens: EH #HA

0 tokens:

1 tokens: —
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11 tokens: E% (L ¥ T H5 . £EI X £ £,

264 tokens: £ T &h = » EAE BY A 25 B, il TH EEL CHLESH L = FF T
100 tokens: — ZE O E O E T LIESLC [T &KW DM (2 #5 T o = A, LIEBL
92 tokens: &é& & M FLY T RS & E4F (£ L B, =KSA o - g N —F 3 R
693 tokens: &3O M Bl T ER % EVET & A3 I REhG AN HD ., FBFE (T th 0
276 tokens: BE O FAN X BZ I2 BE L BB & 685 F M G0, BE (X &E0 2 25 7

Get Part-of-Speech Tags

Get the token details and then view the details of the first few tokens.

tdetails = tokenDetails(documents);

head(tdetails)

ans=8x8 table
Token DocumentNumber LineNumber Type Language PartOfSpeech
"EE" 1 1 letters ja pronoun
& 1 1 letters ja adposition
" 1 1 letters ja noun
‘T 1 1 letters ja auxiliary-verb
"HBH" 1 1 letters ja auxiliary-verb
"EBA" 2 1 letters ja proper-noun
"BAR" 2 1 letters ja proper-noun
= 4 1 letters ja numeral

The PartOfSpeech variable in the table contains the part-of-speech tags of the tokens.
Create word clouds of all the nouns and adjectives, respectively.

figure

idx = tdetails.PartO0fSpeech == "noun";
tokens = tdetails.Token(idx);
subplot(1,2,1)

wordcloud(tokens);

title("Nouns")

idx = tdetails.PartOfSpeech == "adjective";
tokens = tdetails.Token(idx);
subplot(1,2,2)

wordcloud(tokens);

title("Adjectives")
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Nouns
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Prepare Text Data for Analysis

Remove the stop words.

Adjectives
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SECABL
JELLY ﬁ E L,;ﬂmtl

ERBLY pay

ohrELoL
T xﬁ[‘\ R 1‘“ ..-L"'
? .ll'\.f_([.n.ﬁlr‘ W
oL HE Ly 1"'l

- _a.:-jrmtrLL-.;‘ﬁ..

documents = removeStopWords(documents);

documents(1:10)

ans =
10x1 tokenizedDocument:

2 tokens: BE ¥
2 tokens: EH #HA
0 tokens:

0 tokens:
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6
117
43
46
323
122

tokens:
tokens:
tokens:
tokens:
tokens:
tokens:

Eom o, T OEL

nEaE RY D B, EFEEL CLOHLH —v—=v— Il LV:=F &8 ., BE
A E R LELGC &KW DR £5 o . LEBLK FE Eh &k wd . EE B
E N RS EE . Bo BB —E RZX . D B8 £ BL LEro . L5
£50< By #HR EVWHY @5 KEg it , TE M £-o 25 &5 FX .
EE TN RZ TEBE AEH . BE KM . ¥R KDL KB EF EA- FYIEL,

Erase the punctuation.

documents = erasePunctuation(documents);

documents(1:10)

ans =

10x1 tokenizedDocument:

PO ONN

102
36
38

274

101

tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:

EE &
BB ®%8

EE B FE EO

Hh EAE BRY DO & EREL CHLH —v—=r— Il M=F LB BE 1B J
4 2 2 LIESK &L D 2o Bo LIESLK FEE EH BE: 1A =4 < F
SE [y RS E5F o R —F BEx & D B8 2 BEL LFE-> £ E- £
30 By R EVWHT M5 KEG ith FEFE th &£-5 =5 A EZX FIIC &L
EE TN W% BE B G5 BE L8 2K RS KB EF EA- FUIFLEALE H

Lemmatize the text using normalizeWords.

documents = normalizeWords(documents);

documents(1:10)

ans =

10x1 tokenizedDocument:

tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:

& M
5B &%\

BE | £ EL

Ehd EAE BE O< & BEWL LHLYO —v—=v— i< W=F BE TE B
B4 E 8 LEGLC &K D £% 8% LIESLK FE Fh &k 18D ELE F< 8
AHE < R 5% % R —E RAd B D B8 2Ry LES £S5 ES &
£O0C By #E BEWVWEYT M5 KELQ M TF M £5 = £ FZD Al &0
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101 tokens: B#E A B%E TE P €5 BE & F& RS KB EFF BAD TYEFELALE H

Some preprocessing steps, such as removing stop words and erasing punctuation, return
empty documents. Remove the empty documents using the removeEmptyDocuments
function.

documents = removeEmptyDocuments(documents);
Create Preprocessing Function

Creating a function that performs preprocessing can be useful to prepare different
collections of text data in the same way. For example, you can use a function to
preprocess new data using the same steps as the training data.

Create a function which tokenizes and preprocesses the text data to use for analysis. The
function preprocessJapaneseText, performs these steps:

Tokenize the text using tokenizedDocument.

Erase punctuation using erasePunctuation.

Remove a list of stop words (such as "& % <", "& fz4)", and "® 5 5") using
removeStopWords.

4 Lemmatize the words using normalizeWords.

Remove the empty documents after preprocessing using the removeEmptyDocuments
function. Removing documents after using a preprocessing function makes it easier to
remove corresponding data such as labels from other sources.

In this example, use the preprocessing function preprocessJapaneseText, listed at the
end of the example, to prepare the text data.

documents = preprocessJapaneseText(textData);
documents(1:5)

ans =
5x1 tokenizedDocument:

2 tokens: BFE ¥
2 tokens: EB #A
0 tokens:

0 tokens:

4

tokens: &ZE JH F1£ &L
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Remove the empty documents.
documents = removeEmptyDocuments(documents);

Fit Topic Model

Fit a latent Dirichlet allocation (LDA) topic model to the data. An LDA model discovers
underlying topics in a collection of documents and infers word probabilities in topics.

To fit an LDA model to the data, you first must create a bag-of-words model. A bag-of-
words model (also known as a term-frequency counter) records the number of times that
words appear in each document of a collection. Create a bag-of-words model using
bagOfWords.

bag = bagOfWords(documents);
Remove the empty documents from the bag-of-words model.
bag = removeEmptyDocuments(bag);

Fit an LDA model with seven topics using fitlda. To suppress the verbose output, set
'Verbose' to 0.

numTopics = 7;
mdl = fitlda(bag,numTopics, 'Verbose',0);

Visualize the first four topics using word clouds.

figure

for i = 1:4
subplot(2,2,1)
wordcloud(mdl,i);
title("Topic " + 1)

end
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Visualize multiple topic mixtures using stacked bar charts. View five input documents at
random and visualize the corresponding topic mixtures.

numDocuments = numel(documents);
idx = randperm(numDocuments,5);
documents (idx)

ans =
5x1 tokenizedDocument:

4 tokens: fiE ME whHEh, SIEXTFD

7 tokens: #1T €% W&k ES5LTH BEhd <hd H?

13 tokens: ¥% FAH WWE #HF L4 B find BFED WX =Y Il & A
3 tokens: &£4& E TE5
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23 tokens: XD A# EMND LW B fliE BHD <hd BB E B RE % B B25

topicMixtures = transform(mdl,documents(idx));
figure

barh(topicMixtures(1:5,:), 'stacked')

xlim([0 11)

title("Topic Mixtures")

xlabel("Topic Probability")

ylabel("Document")

legend("Topic " + string(l:numTopics), 'Location', 'northeastoutside’)

Topic Mixtures

-Tclp'u: 1
N Topic 2
[ dTopic 3
I Topic 4
T Topic 5
[ Topic 6
I Topic 7

Document

0 02 0.4 0.6 08 1
Topic Probability

Example Preprocessing Function
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The function preprocessJapaneseText, performs these steps:

Tokenize the text using tokenizedDocument.
Erase punctuation using erasePunctuation.

Remove a list of stop words (such as "® & ", "®7=V)", and "% 5 5") using
removeStopWords.

4 Lemmatize the words using normalizeWords.
function documents = preprocessJapaneseText(textData)

% Tokenize the text.
documents = tokenizedDocument (textData);

% Erase the punctuation.
documents = erasePunctuation(documents);

% Remove a list of stop words.
documents = removeStopWords(documents);

% Lemmatize the words.
documents = normalizeWords(documents, 'Style’', 'lemma');
end

See Also

addPart0fSpeechDetails | normalizeWords | removeStopWords | stopWords |
tokenDetails | tokenizedDocument

More About

. “Language Considerations” on page 4-2

. “Create Simple Text Model for Classification” on page 2-2

. “Analyze Text Data Using Topic Models” on page 2-18

. “Analyze Text Data Using Multiword Phrases” on page 2-9

. “Analyze Text Data Containing Emojis” on page 2-35

. “Train a Sentiment Classifier” on page 2-43

. “Classify Text Data Using Deep Learning” on page 2-53

. “Generate Text Using Deep Learning” (Deep Learning Toolbox)
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See Also
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German Language Support

4-26

This topic summarizes the Text Analytics Toolbox features that support German text. For
an example showing how to analyze German text data, see “Analyze German Text Data”
on page 4-33.

Tokenization

The tokenizedDocument function automatically detects German input. Alternatively, set
the 'Language’' option in tokenizedDocument to 'de’. This option specifies the
language details of the tokens. To view the language details of the tokens, use
tokenDetails. These language details determine the behavior of the
removeStopWords, addPart0fSpeechDetails, normalizeWords,
addSentenceDetails, and addEntityDetails functions on the tokens.

Tokenize German Text

Tokenize German text using tokenizedDocument. The function automatically detects
German text.

str = [
"Guten Morgen. Wie geht es dir?"

"Heute wird ein guter Tag."l;
documents = tokenizedDocument(str)

documents =
2x1 tokenizedDocument:

8 tokens: Guten Morgen . Wie geht es dir ?
6 tokens: Heute wird ein guter Tag .

Sentence Detection

To detect sentence structure in documents, use the addSentenceDetails. You can use
the abbreviations function to help create custom lists of abbreviations to detect.

Add Sentence Details to German Documents

Tokenize German text using tokenizedDocument.
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str = [
"Guten Morgen, Dr. Schmidt. Geht es Ihnen wieder besser?"
"Heute wird ein guter Tag."];

documents = tokenizedDocument(str);

Add sentence details to the documents using addSentenceDetails. This function adds
the sentence numbers to the table returned by tokenDetails. View the updated token
details of the first few tokens.

documents = addSentenceDetails(documents);
tdetails = tokenDetails(documents);
head(tdetails, 10)

ans=10x6 table

Token DocumentNumber SentenceNumber LineNumber Type Langt
"Guten" 1 1 1 letters de¢
"Morgen" 1 1 1 letters de¢
o 1 1 1 punctuation de
"Dr" 1 1 1 letters de¢
o 1 1 1 punctuation de¢
"Schmidt" 1 1 1 letters de¢
o 1 1 1 punctuation de¢
"Geht" 1 2 1 letters de¢
"es" 1 2 1 letters de¢
"Thnen" 1 2 1 letters de¢

Table of German Abbreviations

View a table of German abbreviations. Use this table to help create custom tables of
abbreviations for sentence detection when using addSentenceDetails.

tbl = abbreviations('Language', 'de');

head (tbl)
ans=8x2 table
Abbreviation Usage
"A.T" regular
"ABl" regular
"Abb" regular
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"Abdr" regular
"Abf" regular
"Abf1" regular
"Abh" regular
"Abk" regular

Part of Speech Details

To add German part of speech details to documents, use the addPart0fSpeechDetails
function.

Get Part of Speech Details of German Text

Tokenize German text using tokenizedDocument.
str = [

"Guten Morgen. Wie geht es dir?"

"Heute wird ein guter Tag."];
documents = tokenizedDocument(str)

documents =
2x1 tokenizedDocument:

8 tokens: Guten Morgen . Wie geht es dir ?

6 tokens: Heute wird ein guter Tag .

To get the part of speech details for German text, first use addPart0fSpeechDetails.
documents = addPartOfSpeechDetails(documents);
To view the part of speech details, use the tokenDetails function.

tdetails = tokenDetails(documents);

head(tdetails)

ans=8x7 table
Token DocumentNumber SentenceNumber LineNumber Type Langu:
"Guten" 1 1 1 letters de
"Morgen" 1 1 1 letters de
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o 1 1 1 punctuation
"Wie" 1 2 1 letters
"geht" 1 2 1 letters
"es" 1 2 1 letters
“dir" 1 2 1 letters
e 1 2 1 punctuation

Named Entity Recognition
To add entity tags to documents, use the addEntityDetails function.
Add Named Entity Tags to German Text

Tokenize German text using tokenizedDocument.
str = [
"Ernst zog von Frankfurt nach Berlin."

"Besuchen Sie Volkswagen in Wolfsburg."];
documents = tokenizedDocument(str);

To add entity tags to German text, use the addEntityDetails function. This function
detects person names, locations, organizations, and other named entities.

documents = addEntityDetails(documents);
To view the entity details, use the tokenDetails function.

tdetails = tokenDetails(documents);

head(tdetails)
ans=8x8 table
Token DocumentNumber SentenceNumber LineNumber Type
"Ernst" 1 1 1 letters
"zog" 1 1 1 letters
"von" 1 1 1 letters
"Frankfurt" 1 1 1 letters
"nach" 1 1 1 letters
"Berlin" 1 1 1 letters
o 1 1 1 punctuation
"Besuchen" 2 1 1 letters
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View the words tagged with entity "person", "location", "organization", or

"other". These words are the words not tagged with "non-entity".

idx = tdetails.Entity ~= "non-entity";

tdetails(idx,:)

ans=5x8 table

Token DocumentNumber SentenceNumber LineNumber Type Langu:
"Ernst"” 1 1 1 letters de
"Frankfurt" 1 1 1 letters de
"Berlin" 1 1 1 letters de
"Volkswagen" 2 1 1 letters de
"Wolfsburg" 2 1 1 letters de

Stop Words

To remove stop words from documents according to the token language details, use
removeStopWords. For a list of German stop words set the ' Language' option in
stopWords to 'de’.

Remove German Stop Words from Documents

Tokenize German text using tokenizedDocument. The function automatically detects
German text.

str = [
"Guten Morgen. Wie geht es dir?"
"Heute wird ein guter Tag."l;
documents = tokenizedDocument(str)

documents =
2x1 tokenizedDocument:

8 tokens: Guten Morgen . Wie geht es dir ?

6 tokens: Heute wird ein guter Tag

Remove stop words using the removeStopWords function. The function uses the
language details from documents to determine which language stop words to remove.
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documents

removeStopWords (documents)

documents =
2x1 tokenizedDocument:

5 tokens: Guten Morgen . geht ?
5 tokens: Heute wird guter Tag .

Stemming
To stem tokens according to the token language details, use normalizeWords.
Stem German Text

Tokenize German text using the tokenizedDocument function. The function
automatically detects German text.

str = [
"Guten Morgen. Wie geht es dir?"

"Heute wird ein guter Tag."];
documents = tokenizedDocument(str);

Stem the tokens using normalizeWords.
documents = normalizeWords(documents)

documents =
2x1 tokenizedDocument:

8 tokens: gut morg . wie geht es dir ?
6 tokens: heut wird ein gut tag .

Language-Independent Features
Word and N-Gram Counting
The bag0fWords and bag0fNgrams functions support tokenizedDocument input

regardless of language. If you have a tokenizedDocument array containing your data,
then you can use these functions.
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Modeling and Prediction

The fitlda and fitlsa functions support bagOfWords and bag0fNgrams input
regardless of language. If you have a bagOfWords or bagOfNgrams object containing
your data, then you can use these functions.

The trainWordEmbedding function supports tokenizedDocument or file input
regardless of language. If you have a tokenizedDocument array or a file containing
your data in the correct format, then you can use this function.

See Also

addLanguageDetails | addPart0fSpeechDetails | normalizeWords |
removeStopWords | stopWords | tokenDetails | tokenizedDocument

More About

. “Language Considerations” on page 4-2
. “Analyze German Text Data” on page 4-33



Analyze German Text Data

Analyze German Text Data

This example shows how to import, prepare, and analyze German text data using a topic
model.

German text data can be large and can contain lots of noise that negatively affects
statistical analysis. For example, the text data can contain the following:

* Variations in word forms. For example, ,rot”, ,rote”, and ,roten”.

Words that add noise. For example, stop words such as ,der”, ,die”, and ,das”.
* Punctuation and special characters.

These word clouds illustrate word frequency analysis applied to some raw text data and a
preprocessed version of the same text data.
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This example first shows how to import and prepare German text data, and then it shows
how to analyze the text data using a Latent Dirichlet Allocation (LDA) model. An LDA
model is a topic model that discovers underlying topics in a collection of documents and

infers the word probabilities in topics. Use these steps in preparing the text data and
fitting the model:

* Import the text data from a CSV file and extract the relevant data.

Prepare the text data for analysis using standard preprocessing techniques.
» Fit a topic model and visualize the results.
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Import Data

Download the data vorhaben. csv from https://opendata.bonn.de/dataset/vorhabenliste-b
%C3%BCrgerbeteiligungen-planungen-und-projekte. This file can change over time, so
the results in the example can vary.

Use detectImportOptions to determine the format of the CSV file and set the text type
to string. Set the 'Encoding' option to 'IS0-8859-15". Read the data using the
readtable function and view the first few rows.

filename = "vorhaben.csv";

options = detectImportOptions(filename, 'TextType', 'string', 'Encoding', 'IS0-8859-15");
data = readtable(filename,options);

head(data)

ans=8x19 table
Titel

"Bauleitplanverfahren zur Aufstellung des vorhabenbezogenen<Bebauungsplans Nr. 662
"Bauleitplanverfahren zur Aufstellung des vorhabenbezogenen<Bebauungsplans Nr. 652:
"Bauleitplanverfahren zur Aufstellung des Bebauungsplans<Nr. 7621-56 ?Sebastianstr:
"EPICURO - European Partnership for Innovative Cities within and Urban Resilience |
"Bauleitplanverfahren zur Aufstellung des Bebauungsplanes Nr. 6719-3 "Schwimmbad W:
"Blrgerbeteiligung an der Konzepterstellung fir den Neubau eines Schwimmbades in B
"Integriertes Handlungskonzept Grine Infrastruktur (InHK GI) zurezukinftigen Freir:
"Verlangerung des Teufelsbachweges bis zur L 83n"

Extract the text data from the variable InhaltlicheBeschreibungUndZielsetzung
(the description of the content and the goal).

textData = data.InhaltlicheBeschreibungUndZielsetzung;
Visualize the text data in a word cloud.

figure
wordcloud(textData);
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Tokenize Text Data

Create an array of tokenized documents using the tokenizedDocument function.

documents = tokenizedDocument (textData);

documents(1:10)

ans =

10x1 tokenizedDocument:

50 tokens:
46 tokens:
41 tokens:
134 tokens:
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Fir das Gebiet zwischen Reuterstrafe , Bundeskanzlerplatz , Willy-Bran
Fir den vorhabenbezogenen Bebauungsplan Nr . 6522-1 ? Didinkirica ? de!
Fir das Gebiet zwischen Alfred-Bucherer-Stralle , Sebastianstrafe und d¢
In den vergangenen Jahren fihrte der Klimawandel zu einer Vielzahl von
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24 tokens: Schaffung von Planungsrecht fir den Bau eines neuen Familien - , Schul
80 tokens: FiUr die begleitende Blirgerbeteiligung bei der Konzepterstellung fir da
60 tokens: In der Gebietskulisse des Grinen C sollen die Freirdaume auch zukiinftig
51 tokens: Zur Entlastung von Putzchen / Bechlinghoven vor Durchgangsverkehr und :
29 tokens: Fir das Areal der ehemaligen Landwirtschaftskammer sowie einer angrenz
37 tokens: Fir das Areal Herbert-Rabius-StraBe im Stadtbezirk Beuel , Ortsteil Bel

Get Part-of-Speech Tags
Add the part of speech details using the addPart0fSpeechDetails function.
documents = addPartOfSpeechDetails(documents);

Get the token details and then view the details of the first few tokens.

tdetails = tokenDetails(documents);

head(tdetails)
ans=8x7 table
Token DocumentNumber SentenceNumber LineNumber Type
"Fur" 1 1 1 letters
"das" 1 1 1 letters
"Gebiet" 1 1 1 letters
"zwischen" 1 1 1 letters
"ReuterstraBe" 1 1 1 letters
. 1 1 1 punctuat:
"Bundeskanzlerplatz" 1 1 1 letters
. 1 1 1 punctuat:

The PartOfSpeech variable in the table contains the part-of-speech tags of the tokens.
Create word clouds of all the nouns and adjectives, respectively.

figure

idx = tdetails.PartOfSpeech == "noun";
tokens = tdetails.Token(idx);
subplot(1,2,1)

wordcloud(tokens);

title("Nouns")

idx = tdetails.PartOfSpeech == "adjective";
tokens = tdetails.Token(idx);
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subplot(1,2,2)
wordcloud(tokens);
title("Adjectives")
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Prepare Text Data for Analysis

Tokenize the text using tokenizedDocument and view the first few documents.
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documentsRaw = tokenizedDocument (textData);

documents = documentsRaw;
documents(1:10)

ans =
10x1 tokenizedDocument:
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50 tokens: Fir das Gebiet zwischen ReuterstraBe , Bundeskanzlerplatz , Willy-Brant
46 tokens: Fir den vorhabenbezogenen Bebauungsplan Nr . 6522-1 ? Didinkirica ? de
41 tokens: Fur das Gebiet zwischen Alfred-Bucherer-Stralle , SebastianstraBe und de
134 tokens: In den vergangenen Jahren fihrte der Klimawandel zu einer Vielzahl von
24 tokens: Schaffung von Planungsrecht fir den Bau eines neuen Familien - , Schul
80 tokens: Fir die begleitende Blirgerbeteiligung bei der Konzepterstellung fir da:
60 tokens: In der Gebietskulisse des Grinen C sollen die Freirdaume auch zukinftig
51 tokens: Zur Entlastung von Pitzchen / Bechlinghoven vor Durchgangsverkehr und

29 tokens: Fir das Areal der ehemaligen Landwirtschaftskammer sowie einer angrenz
37 tokens: Fur das Areal Herbert-Rabius-Strafe im Stadtbezirk Beuel , Ortsteil Bel

Replace common phrases (n-grams) with a single token and remove the stop words.

old ["Bad" "Godesberg"];

new = "Bad Godesberg";

documents = replaceNgrams(documents,old,new);
documents = removeStopWords(documents);
documents(1:10)

ans =
10x1 tokenizedDocument:

35 tokens: Gebiet zwischen ReuterstraBe , Bundeskanzlerplatz , Willy-Brandt-Allee

33 tokens: vorhabenbezogenen Bebauungsplan Nr . 6522-1 ? Didinkirica ? Bundesstadt
27 tokens: Gebiet zwischen Alfred-Bucherer-Strafe , Sebastianstrale FuBweg zwischel
81 tokens: vergangenen Jahren fihrte Klimawandel Vielzahl Folgen Umwelt , Wirtscha
15 tokens: Schaffung Planungsrecht Bau neuen Familien - , Schul - Sportschwimmbade:
57 tokens: begleitende Biirgerbeteiligung Konzepterstellung neue Schwimmbad soll fo’
40 tokens: Gebietskulisse Grinen C sollen Freiraume zukinftig Sinne Naherholung , |
32 tokens: Entlastung Putzchen / Bechlinghoven Durchgangsverkehr Verbindung geplan
19 tokens: Areal ehemaligen Landwirtschaftskammer sowie angrenzenden stadtischen F
25 tokens: Areal Herbert-Rabius-Strafe Stadtbezirk Beuel , Ortsteil Beuel-Mitte so

Normalize the text using the normalizeWords function.

documents = normalizeWords(documents);
documents(1:10)

ans =
10x1 tokenizedDocument:

35 tokens: gebiet zwisch reuterstrass , bundeskanzlerplatz , willy-brandt-alle , e
33 tokens: vorhabenbezog bebauungsplan nr . 6522-1 ? didinkirica ? bundesstadt bon
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27 tokens: gebiet zwisch alfred-bucherer-strass , sebastianstrass fussweg zwisch r
81 tokens: vergang jahr fuhrt klimawandel vielzahl folg umwelt , wirtschaft mensch
15 tokens: schaffung planungsrecht bau neu famili - , schul - sportschwimmbad flac
57 tokens: begleit burgerbeteil konzepterstell neu schwimmbad soll folgend them be
40 tokens: gebietskuliss grun c soll freiraum zukunft sinn naherhol , landwirtscha
32 tokens: entlast putzch / bechlinghov durchgangsverkehr verbind geplant anschlus
19 tokens: areal ehemal landwirtschaftskamm sowi angrenz stadtisch flach stadtbezi
25 tokens: areal herbert-rabius-strass stadtbezirk beuel , ortsteil beuel-mitt sol

Erase the punctuation using the erasePunctuation function.

documents = erasePunctuation(documents);
documents(1:10)

ans =
10x1 tokenizedDocument:

27 tokens: gebiet zwisch reuterstrass bundeskanzlerplatz willybrandtalle eduardpfl
25 tokens: vorhabenbezog bebauungsplan nr 65221 didinkirica bundesstadt bonn stadtl
22 tokens: gebiet zwisch alfredbuchererstrass sebastianstrass fussweg zwisch rockur
64 tokens: vergang jahr fuhrt klimawandel vielzahl folg umwelt wirtschaft mensch s
11 tokens: schaffung planungsrecht bau neu famili schul sportschwimmbad flach nord
41 tokens: begleit burgerbeteil konzepterstell neu schwimmbad soll folgend them be
31 tokens: gebietskuliss grun c soll freiraum zukunft sinn naherhol landwirtschaft
27 tokens: entlast putzch bechlinghov durchgangsverkehr verbind geplant anschlusss:
18 tokens: areal ehemal landwirtschaftskamm sowi angrenz stadtisch flach stadtbezi
19 tokens: areal herbertrabiusstrass stadtbezirk beuel ortsteil beuelmitt soll vorl

Visualize the raw and cleaned data in word clouds.

figure

subplot(1,2,1)
wordcloud(documentsRaw) ;
title("Raw Data")

subplot(1,2,2)
wordcloud(documents);
title("Cleaned Data")
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Creating a function that performs preprocessing can be useful to prepare different
collections of text data in the same way. For example, you can use a function to
preprocess new data using the same steps as the training data.

Create a function which tokenizes and preprocesses the text data to use for analysis. The
function preprocessGermanText, listed at the end of the example, performs these

steps:

1 Tokenize the text using tokenizedDocument.

2 Replace the multiword phrase ["Bad" "Godesberg"] with "Bad Godesberg".
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3 Remove a list of stop words (such as ,der”, ,die”, and , das”) using
removeStopWords.

Normalize the words using normalizeWords.
5 Erase punctuation using erasePunctuation.
Remove the empty documents after preprocessing using the removeEmptyDocuments

function. Removing documents after using a preprocessing function makes it easier to
remove corresponding data such as labels from other sources.

In this example, use the preprocessing function preprocessGermanText, listed at the
end of the example, to prepare the text data.

documents = preprocessGermanText(textData);
documents(1:5)

ans =
5x1 tokenizedDocument:

27 tokens: gebiet zwisch reuterstrass bundeskanzlerplatz willybrandtalle eduardpfl
25 tokens: vorhabenbezog bebauungsplan nr 65221 didinkirica bundesstadt bonn stadt
22 tokens: gebiet zwisch alfredbuchererstrass sebastianstrass fussweg zwisch rockur
64 tokens: vergang jahr fuhrt klimawandel vielzahl folg umwelt wirtschaft mensch s
11 tokens: schaffung planungsrecht bau neu famili schul sportschwimmbad flach nord

Remove the empty documents using the removeEmptyDocuments function.
documents = removeEmptyDocuments(documents);

Fit Topic Model

Fit a latent Dirichlet allocation (LDA) topic model to the data. An LDA model discovers
underlying topics in a collection of documents and infers word probabilities in topics.

To fit an LDA model to the data, you first must create a bag-of-words model. A bag-of-
words model (also known as a term-frequency counter) records the number of times that
words appear in each document of a collection. Create a bag-of-words model using
bagO0fWords.

bag = bag0fWords(documents);

Remove the empty documents from the bag-of-words model.

bag = removeEmptyDocuments(bag);
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Fit an LDA model with seven topics using fitlda. To suppress the verbose output, set

'Verbose' to 0.

numTopics = 7;
mdl = fitlda(bag,numTopics, 'Verbose',0);

Visualize the first four topics using word clouds.

figure
for i = 1:4
subplot(2,2,1)

wordcloud(mdl,1i);
title("Topic " + 1)

end
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Visualize multiple topic mixtures using stacked bar charts. View five input documents at
random and visualize the corresponding topic mixtures.

numDocuments =
idx = randperm(numDocuments,5);

documents (idx)

ans =

numel (documents) ;

5x1 tokenizedDocument:

4 tokens:
82 tokens:
116 tokens:
64 tokens:
50 tokens:

topicMixtures

figure

gastronom angebot sollt verbessert

grunflach dietrichglaunerstrass rand dorfplatz entlang fussweg mehlem
sportplatz plittersdorf kommt leid regelmass unschon vorfall einsehbar
mainz strass bereich geschaft kirch uberwieg beidseit zugeparkt unscho
"1" "bezirksverodnet" "sollt" "kulturburgermeist" "gewahlt" "hatt" "au

transform(mdl,documents(idx));

barh(topicMixtures(1:5,:), 'stacked')

xlim([0 1])

title("Topic Mixtures")

xlabel("Topic Probability")

ylabel("Document")

legend("Topic " + string(1l:numTopics), 'Location', 'northeastoutside')
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Topic Mixtures
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Example Preprocessing Function

The function preprocessGermanText, performs these steps:

1
2
3

4
5

Tokenize the text using tokenizedDocument.
Replace the multiword phrase ["Bad" "Godesberg"] with "Bad Godesberg".

Remove a list of stop words (such as ,der”, ,die”, and ,das”) using
removeStopWords.

Normalize the words using normalizeWords.
Erase punctuation using erasePunctuation.

function documents = preprocessGermanText (textData)
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% Tokenize the text.
documents = tokenizedDocument (textData);

% Replace multiword phrases

old = ["Bad" "Godesberg"];

new = "Bad Godesberg";

documents = replaceNgrams(documents,old,new);

% Remove a list of stop words.
documents = removeStopWords(documents);

% Normalize the words.
documents = normalizeWords(documents);

% Erase the punctuation.
documents = erasePunctuation(documents);

end

See Also

addPart0fSpeechDetails | normalizeWords | removeStopWords | stopWords |
tokenDetails | tokenizedDocument

More About

. “Language Considerations” on page 4-2

. “Create Simple Text Model for Classification” on page 2-2

. “Analyze Text Data Using Topic Models” on page 2-18

. “Analyze Text Data Using Multiword Phrases” on page 2-9

. “Analyze Text Data Containing Emojis” on page 2-35

. “Train a Sentiment Classifier” on page 2-43

. “Classify Text Data Using Deep Learning” on page 2-53

. “Generate Text Using Deep Learning” (Deep Learning Toolbox)
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Language-Independent Features

Word and N-Gram Counting

The bag0OfWords and bag0fNgrams functions support tokenizedDocument input
regardless of language. If you have a tokenizedDocument array containing your data,
then you can use these functions.

Modeling and Prediction

The fitlda and fitlsa functions support bagOfWords and bag0fNgrams input
regardless of language. If you have a bag0OfWords or bagOfNgrams object containing
your data, then you can use these functions.

The trainWordEmbedding function supports tokenizedDocument or file input
regardless of language. If you have a tokenizedDocument array or a file containing
your data in the correct format, then you can use this function.

See Also

addLanguageDetails | addSentenceDetails | bag0OfNgrams | bagOfWords |
fitlda | fitlsa | normalizeWords | removeWords | stopWords |
tokenizedDocument | wordcloud

More About

. “Text Data Preparation”

. “Modeling and Prediction”

. “Display and Presentation”

. “Japanese Language Support” on page 4-6
. “Analyze Japanese Text Data” on page 4-12
. “German Language Support” on page 4-26
. “Analyze German Text Data” on page 4-33
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This section provides a list of terms used in text analytics.

Documents and Tokens

Term

Definition

More Information

Bigram

Two tokens in succession.
For example, [ "New"
"York"].

bag0fNgrams

Complex token

A token with complex
structure. For example, an
email address or a hash tag.

tokenDetails

Context

Tokens or characters that
surround a given token.

context

Corpus

A collection of documents.

tokenizedDocument

Document

A single observation of text
data. For example, a report,
a tweet, or an article.

tokenizedDocument

Grapheme

A human readable
character. A grapheme can
consist of multiple Unicode
code points. For example,
"a", "0 or "§&".

splitGraphemes

N-gram

N tokens in succession.

bagOfNgrams

Part of speech

Categories of words used in
grammatical structure. For

example, "noun", "verb", and
"adjective".

addPartOfSpeechDetail
s

Token

A string of characters
representing a unit of text
data, also known as a
"unigram". For example, a
word, number, or email
address.

tokenizedDocument
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Term Definition More Information
Token details Information about the token.|tokenDetails
For example, type,
language, or part-of-speech
details.
Token types The category of the token. |tokenDetails
For example, "letters",
"punctuation"”, or "email
address".
Tokenized document A document split into tokenizedDocument
tokens.
Trigram Three tokens in succession. |bagOfNgrams
For example, ["The"
"United" "States"]
Vocabulary Unique words or tokens in a |tokenizedDocument
corpus or model.
Preprocessing
Term Definition More Information
Normalize Reduce words to a root normalizeWords
form. For example, reduce
the word "walking" to "walk"
using stemming or
lemmatization.
Lemmatize Reduce words to a normalizeWords

dictionary word (the lemma
form). For example, reduce
the words "running" and
“ran" to "run".
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Term

Definition

More Information

Stem

Reduce words by removing
inflections. The reduced
word is not necessarily a
real word. For example, the
Porter stemmer reduces the
words "happy" and
"happiest" to "happi".

normalizeWords

Stop words

Words commonly removed
before analysis. For example
"and", HOf", and ”the".

removeStopWords

Modeling and Prediction

Bag-of-Words

Term

Definition

More Information

Bag-of-n-grams model

A model that records the
number of times that n-
grams appear in each
document of a corpus.

bag0fNgrams

Bag-of-words model

A model that records the
number of times that words
appear in each document of
a collection.

bag0fWords

Term frequency count
matrix

A matrix of the frequency
counts of words occurring in
a collection of documents
corresponding to a given
vocabulary. This matrix is
the underlying data of a
bag-of-words model.

bag0fWords
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Term

Definition

More Information

Term Frequency-Inverse
Document Frequency (tf-idf)
matrix

A statistical measure based
on the word frequency
counts in documents and the
proportion of documents
containing the words in the
corpus.

tfidf

Latent Dirichlet Allocation

Term

Definition

More Information

Corpus topic probabilities

The probabilities of
observing each topic in the
corpus used to fit the LDA
model.

ldaModel

Document topic
probabilities

The probabilities of
observing each topic in each
document used to fit the
LDA model. Equivalently,
the topic mixtures of the
training documents.

ldaModel

Latent Dirichlet allocation
(LDA)

A generative statistical topic
model that infers topic
probabilities in documents
and word probabilities in
topics.

fitlda

Perplexity

A statistical measure of how
well a model describes the
given data. A lower
perplexity indicates a better
fit.

logp

Topic

A distribution of words,
characterized by the "topic
word probabilities".

ldaModel
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Term Definition More Information
Topic concentration The concentration ldaModel
parameter of the underlying
Dirichlet distribution of the
corpus topics mixtures.
Topic mixture The probabilities of topics in |transform
a given document.
Topic word probabilities The probabilities of words in | LdaModel
a given topic.
Word concentration The concentration ldaModel

parameter of the underlying
Dirichlet distribution of the
topics.

Latent Semantic Analysis

Term Definition More Information
Component weights The singular values of the |lsaModel
decomposition, squared.
Document scores The score vectors in lower |transform
dimensional space of the
documents used to fit the
LSA model.
Latent semantic analysis A dimension reducing fitlsa
(LSA) technique based on
principal component
analysis (PCA).
Word scores The scores of each word in |lsaModel

each component of the LSA
model.




See Also

Word Embeddings

Term Definition More Information
Word embedding A model, popularized by the |wordEmbedding
word2vec, GloVe, and
fastText libraries, that maps
words in a vocabulary to
real vectors.
Word embedding layer A deep learning network wordEmbeddinglLayer
layer that learns a word
embedding during training.
Word encoding A model that maps words to (wordEncoding
numeric indices.
Visualization
Term Definition More Information
Text scatter plot A scatter plot with words textscatter
plotted at specified
coordinates instead of
markers.
Word cloud A chart that displays words |[wordcloud
with sizes corresponding to
numeric data, usually
frequency counts.
See Also

addPartOfSpeechDetails | bag0fNgrams | bag0fWords | fitlda |
normalizeWords | removeStopWords | textscatter | tokenDetails |
tokenizedDocument | wordEmbedding | wordEmbeddinglLayer | wordEncoding |

wordcloud

More About

. “Try Text Analytics in 10 Lines of Code”
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. “Import Text Data into MATLAB”

. “Create Simple Preprocessing Function”

. “Get Started with Topic Modeling”

. “Visualize Text Data Using Word Clouds” on page 3-2



